Skip to main content

Weak POS Tagging Model

Project description

Weak POS Tagger Model

This package utilizes two models for labeling parts of speech. The first model uses files containing lists of words of a certain gramatical class. The second model uses rules to break ambiguity when the first model cannot decide on only one class for a word.

The package takes as input sentences in the form of strings and outputs a string with the POS Tags of the words on the sentence.

Installation

The Weak POS Tagger can be installed from PyPi:

pip install weak_postagger

Usage

POS Tag Classes Accepted

This project utilizes portuguese part of speech classes. The accepted classes and their tokens are as follow:

'verbos': 'VERB',
'adjetivos': 'ADJ',
'adverbios': 'ADV',
'artigos': 'ART',
'conjuncoes': 'CONJ',
'interjeicoes': 'INT',
'substantivos': 'SUBS',
'pronomes': 'PRON',
'numeros': 'NUM',
'preposicoes': 'PREP',
'participios': 'PART'

Text Pre Processing

All text used is pre processed by the default utilizing the following operations:

  • Case lowering
  • Adding space around punctuation
  • Removing non-ASCII characters

It can also optionally perform the following tokenizations:

  • E-mails
  • Urls
  • Numbers
  • Codes

In order to use the optional pre processing the user needs to pass a list containing EMAIL, URL, NUMBER and/or CODE. It can be passed in the instatiation of the class as shown bellow:

tokenization_options = ['EMAIL', 'CODE']
weak_postag = WeakPOSTagging('directory_path/', tokenization_options)

List Based Model

Files

In order to label a string using the list based model the user needs to create a directory containing one text file for each part of speech class it wants to use. The name of each file needs to contain the name of the part of speech class and the contents of the file must be words that are classified as part of that class. For example: We may have a file called substantivos.txt and it would contain the following words:

carro  
mesa  
banana  

And also have a second file called adjetivos.txt and it would contain the words:

azul  
lento  
calmo  

Weak Labeling

The default weak labeling utilizes two steps:

  • The first step is the labeling module ListWeakModel created with the files input in the class.
  • The second step is the label correction module RuleBasedDisambiguation.

In order to use the default pipeline to label a sentence the user needs to first instantiate the class passing the path of the directory where the files are stored. The user then can use this class to label a sentence:

weak_postaging = WeakPOSTagging('directory_path/')
sentence = "Uma banana verde"
labeled_sentence = weak_postaging.label_sentence(sentences)

And the user should receive back the result:

'ART SUBS ADJ'

The user can also specify which optional text pre processing will be applied on the sentence:

tokenization_options = ['EMAIL', 'CODE']
weak_postag = WeakPOSTagging('directory_path/', tokenization_options)  
sentence = "o meu contato é research@email.com"
labeled_sentence = weak_postaging.label_sentence(sentences)

And the user should receive back the result:

'ART PRON VERB SUBS'

Setting a custom pipeline

A custom labeling pipeline can be created by clearing the default pipeline and adding each step to it in the order they need to be executed.

weak_postaging = WeakPOSTagging('directory_path/')
weak_postaging.clear()

list_model_1 = ListWeakModel('directory/')
list_model_2 = ListWeakModel('directory_two/')
rule_weak_model = RuleBasedDisambiguation()

weak_postaging.add_pipeline_step(list_model_1)
        .add_pipeline_step(rule_weak_model)
        .add_pipeline_step(list_model_2)
        .add_pipeline_step(rule_weak_model)

It is important to note that the first step should always be a list based one.

Contribute

If this is the first time you are contributing to this project, first create the virtual environment using the following command:

conda env create -f env/environment.yml

Then activate the environment:

conda activate weakpostag_env

To test your modifications build the package:

pip install dist\weak_postagger-0.0.1-py3-none-any.whl --force-reinstall

Then run the tests:

pytest

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

weak-postagger-0.0.8.tar.gz (13.7 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

weak_postagger-0.0.8-py3-none-any.whl (21.1 kB view details)

Uploaded Python 3

File details

Details for the file weak-postagger-0.0.8.tar.gz.

File metadata

  • Download URL: weak-postagger-0.0.8.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.6

File hashes

Hashes for weak-postagger-0.0.8.tar.gz
Algorithm Hash digest
SHA256 7aa00d5f51a1a47b028d69c97777819cedf890209eb56b2e573d5d7446a618f4
MD5 8850fdc2b83265bb549419b06cd0a5c8
BLAKE2b-256 df5f742d91715f2700988d5f42b0d6e52dac33c905fdd0928770615831d8f36f

See more details on using hashes here.

File details

Details for the file weak_postagger-0.0.8-py3-none-any.whl.

File metadata

  • Download URL: weak_postagger-0.0.8-py3-none-any.whl
  • Upload date:
  • Size: 21.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.7.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.1 CPython/3.7.6

File hashes

Hashes for weak_postagger-0.0.8-py3-none-any.whl
Algorithm Hash digest
SHA256 007102006c0473e277059bf6b850acffdcc960724f734139668280198a4d25bb
MD5 1937156562bbfa54537adc7382341692
BLAKE2b-256 d04444b0704cd389e02847e909508aef4ce71239bfb3428926642e61f0f0b1e2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page