Skip to main content

Python API for working with WEBKNOSSOS datasets, annotations, and for WEBKNOSSOS server interaction.

Project description

WEBKNOSSOS Python Library

PyPI version Supported Python Versions Build Status Documentation Code Style uv

Python API for working with WEBKNOSSOS datasets, annotations, and for WEBKNOSSOS server interaction.

For the WEBKNOSSOS server, please refer to https://github.com/scalableminds/webknossos.

Features

  • easy-to-use dataset API for reading/writing/editing raw 2D/3D image data and volume annotations/segmentation in WEBKNOSSOS-compatiböe format
    • convert from other formats, e.g. tiff stacks
    • add/remove layers
    • update metadata (datasource-properties.json)
    • up/downsample layers
    • compress layers
    • add/remove magnifications
  • Command line tool (CLI) for manipulating and creating WEBKNOSSOS datasets
  • manipulation of WEBKNOSSOS skeleton annotations (*.nml) as Python objects
    • access to nodes, comments, trees, bounding boxes, metadata, etc.
    • create new skeleton annotation from Graph structures or Python objects
  • interaction, connection & scripting with your WEBKNOSSOS instance over the REST API
    • list datastets, annotations, and tasks
    • up- & downloading annotations and datasets

Please refer to the documentation for further instructions.

Installation

The webknossos package requires at least Python 3.10.

You can install it from pypi, e.g. via pip:

pip install webknossos

To install webknossos with the dependencies for all examples, support for more file types, and BioFormats conversions, run: pip install webknossos[all].

For working with Zeiss CZI microscopy data use pip install --extra-index-url https://pypi.scm.io/simple/ webknossos[czi].

By default webknossos can only distribute any computations through multiprocessing or Slurm. For Kubernetes or Dask install these additional dependencies:

pip install cluster_tools[kubernetes]
pip install cluster_tools[dask]

Examples

See the examples folder or the the documentation. The dependencies for the examples are not installed by default. Use pip install webknossos[examples] to install them.

Contributions & Development

Please see the respective documentation page.

License

AGPLv3 Copyright scalable minds

Test Data Credits

Excerpts for testing purposes have been sampled from:

  • Dow Jacobo Hossain Siletti Hudspeth (2018). Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit. eLife. DOI:10.7554/eLife.33988
  • Zheng Lauritzen Perlman Robinson Nichols Milkie Torrens Price Fisher Sharifi Calle-Schuler Kmecova Ali Karsh Trautman Bogovic Hanslovsky Jefferis Kazhdan Khairy Saalfeld Fetter Bock (2018). A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell. DOI:10.1016/j.cell.2018.06.019. License: CC BY-NC 4.0
  • Bosch Ackels Pacureanu et al (2022). Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nature Communications. DOI:10.1038/s41467-022-30199-6
  • Hanke, M., Baumgartner, F. J., Ibe, P., Kaule, F. R., Pollmann, S., Speck, O., Zinke, W. & Stadler, J. (2014). A high-resolution 7-Tesla fMRI dataset from complex natural stimulation with an audio movie. Scientific Data, 1:140003. DOI:10.1038/sdata.2014.3
  • Sample OME-TIFF files (c) by the OME Consortium https://downloads.openmicroscopy.org/images/OME-TIFF/2016-06/bioformats-artificial/

Release history Release notifications | RSS feed

This version

3.1.5

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

webknossos-3.1.5.tar.gz (250.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

webknossos-3.1.5-py3-none-any.whl (293.4 kB view details)

Uploaded Python 3

File details

Details for the file webknossos-3.1.5.tar.gz.

File metadata

  • Download URL: webknossos-3.1.5.tar.gz
  • Upload date:
  • Size: 250.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.28 {"installer":{"name":"uv","version":"0.9.28","subcommand":["publish"]},"python":null,"implementation":{"name":null,"version":null},"distro":{"name":"Ubuntu","version":"24.04","id":"noble","libc":null},"system":{"name":null,"release":null},"cpu":null,"openssl_version":null,"setuptools_version":null,"rustc_version":null,"ci":true}

File hashes

Hashes for webknossos-3.1.5.tar.gz
Algorithm Hash digest
SHA256 f5d5ae441454d7ba82585b04d30ed01d6e7bc70d2a90b021b5a812708bd361fb
MD5 7d197913f9b0b21b980acedd3b824eca
BLAKE2b-256 3f89070d19f648bc76666523e95354bef88acfc85834d2b3b64a472c8ae914df

See more details on using hashes here.

File details

Details for the file webknossos-3.1.5-py3-none-any.whl.

File metadata

  • Download URL: webknossos-3.1.5-py3-none-any.whl
  • Upload date:
  • Size: 293.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: uv/0.9.28 {"installer":{"name":"uv","version":"0.9.28","subcommand":["publish"]},"python":null,"implementation":{"name":null,"version":null},"distro":{"name":"Ubuntu","version":"24.04","id":"noble","libc":null},"system":{"name":null,"release":null},"cpu":null,"openssl_version":null,"setuptools_version":null,"rustc_version":null,"ci":true}

File hashes

Hashes for webknossos-3.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 99e3e1ef516f4c34873114c035aad9a7c8305e9d11632db1acabb15dd0e150c7
MD5 46c10646ee8a5d96f8332d31438b3298
BLAKE2b-256 226ffb4f36e926677426692e1448f73a0699a79e9721a1f78eb2e1a83b315d53

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page