Skip to main content

WHite-box Adversarial Toolbox (WHAT) - Python Library for Deep Learning Security

Project description

WHite-box Adversarial Toolbox (WHAT)

Build Status PyPI version License: MIT PyPI - Python Version

A Python Library for Deep Learning Security that focuses on Real-time White-box Attacks.

Installation

pip install whitebox-adversarial-toolbox

Usage (CLI)

Usage: what [OPTIONS] COMMAND [ARGS]...

  The CLI tool for WHitebox-box Adversarial Toolbox (what).

Options:
  --help  Show this message and exit.

Commands:
  attack   Manage Attacks
  example  Manage Examples
  model    Manage Deep Learning Models

Useful commands:

# List supported models
$ what model list

# List supported Attacks
$ what attack list

# List available examples
$ what example list

Available models:

[x] 1 : YOLOv3      (    Darknet    )   Object Detection        YOLOv3 pretrained on MS COCO dataset.
[x] 2 : YOLOv3      (   Mobilenet   )   Object Detection        YOLOv3 pretrained on MS COCO dataset.
[x] 3 : YOLOv3 Tiny (    Darknet    )   Object Detection        YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 4 : YOLOv3 Tiny (   MobileNet   )   Object Detection        YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 5 : YOLOv4      (    Darknet    )   Object Detection        YOLOv4 pretrained on MS COCO dataset.
[x] 6 : YOLOv4 Tiny (    Darknet    )   Object Detection        YOLOv4 Tiny pretrained on MS COCO dataset.
[x] 7 : SSD         ( MobileNet  v1 )   Object Detection        SSD pretrained on VOC-2012 dataset.
[x] 8 : SSD         ( MobileNet  v2 )   Object Detection        SSD pretrained on VOC-2012 dataset.
[x] 9 : FasterRCNN  (     VGG16     )   Object Detection        Faster-RCNN pretrained on VOC-2012 dataset.

A Man-in-the-Middle Hardware Attack

The Universal Adversarial Perturbation (UAP) can be deployed using a Man-in-the-Middle Hardware Attack.

[ Talk ] [ Video ] [ Paper ] [ Code ]

The Man-in-the-Middle Attack consists of two steps:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whitebox-adversarial-toolbox-0.1.1.tar.gz (8.4 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file whitebox-adversarial-toolbox-0.1.1.tar.gz.

File metadata

File hashes

Hashes for whitebox-adversarial-toolbox-0.1.1.tar.gz
Algorithm Hash digest
SHA256 52c90c3cbb64eeb1736876c97221ca394615e7b727ec3ffa2147d056333a9fb2
MD5 b70cd308456edf02f1043b6fb9ddffbe
BLAKE2b-256 b69bb88670a05d5910f3f5ce740cb12374bc360f5ceb2d96c44b21544b42e5ca

See more details on using hashes here.

File details

Details for the file whitebox_adversarial_toolbox-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for whitebox_adversarial_toolbox-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9fb3295be5a3ee36179730c5eaacfbd83273dc1df64636b016f4da834a22a71d
MD5 e32c75a43dd915bb174338d02701d08f
BLAKE2b-256 461023f4049ac2f6b801860ec12375364443052077ab9f93792ddb6d2d7c8943

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page