Skip to main content

WHite-box Adversarial Toolbox (WHAT) - Python Library for Deep Learning Security

Project description

WHite-box Adversarial Toolbox (WHAT)

Build Status PyPI version License: MIT PyPI - Python Version

A Python Library for Deep Learning Security that focuses on Real-time White-box Attacks.

Installation

pip install whitebox-adversarial-toolbox

Usage (CLI)

Usage: what [OPTIONS] COMMAND [ARGS]...

  The CLI tool for WHitebox-box Adversarial Toolbox (what).

Options:
  --help  Show this message and exit.

Commands:
  attack   Manage Attacks
  example  Manage Examples
  model    Manage Deep Learning Models

Useful commands:

# List supported models
$ what model list

# List supported Attacks
$ what attack list

# List available examples
$ what example list

Available models:

[x] 1 : YOLOv3      (    Darknet    )   Object Detection        YOLOv3 pretrained on MS COCO dataset.
[x] 2 : YOLOv3      (   Mobilenet   )   Object Detection        YOLOv3 pretrained on MS COCO dataset.
[x] 3 : YOLOv3 Tiny (    Darknet    )   Object Detection        YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 4 : YOLOv3 Tiny (   MobileNet   )   Object Detection        YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 5 : YOLOv4      (    Darknet    )   Object Detection        YOLOv4 pretrained on MS COCO dataset.
[x] 6 : YOLOv4 Tiny (    Darknet    )   Object Detection        YOLOv4 Tiny pretrained on MS COCO dataset.
[x] 7 : SSD         ( MobileNet  v1 )   Object Detection        SSD pretrained on VOC-2012 dataset.
[x] 8 : SSD         ( MobileNet  v2 )   Object Detection        SSD pretrained on VOC-2012 dataset.
[x] 9 : FasterRCNN  (     VGG16     )   Object Detection        Faster-RCNN pretrained on VOC-2012 dataset.

A Man-in-the-Middle Hardware Attack

The Universal Adversarial Perturbation (UAP) can be deployed using a Man-in-the-Middle Hardware Attack.

[ Talk ] [ Video ] [ Paper ] [ Code ]

The Man-in-the-Middle Attack consists of two steps:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whitebox-adversarial-toolbox-0.2.0.tar.gz (8.2 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file whitebox-adversarial-toolbox-0.2.0.tar.gz.

File metadata

File hashes

Hashes for whitebox-adversarial-toolbox-0.2.0.tar.gz
Algorithm Hash digest
SHA256 a9d9a499b3234289975df54b8be0092a848ebe67c5a0ccf8fb47519559e032af
MD5 949a05ae717f963a1b86925ff7e8c7f6
BLAKE2b-256 570f562f90b3428e24928655554c333dd27a5d21326084ae9736a60d675bb7cf

See more details on using hashes here.

File details

Details for the file whitebox_adversarial_toolbox-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for whitebox_adversarial_toolbox-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 c32e790bf30354883cfafba79bb29ee29b818782196d81df45a7278934ce5296
MD5 8fc9ef2263c1c8bebae3a2150d2ebf52
BLAKE2b-256 68d051a0ed64d7672bcb26a2be47064d4dc06449f5960cea8ddc9784232cb511

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page