Skip to main content

The fork for whylogs for Apache DataSketches Library for Python

Project description

Apache DataSketchs Logo

The Apache DataSketches Library for Python

This is the official version of the Apache DataSketches Python library.

In the analysis of big data there are often problem queries that don’t scale because they require huge compute resources and time to generate exact results. Examples include count distinct, quantiles, most-frequent items, joins, matrix computations, and graph analysis.

If approximate results are acceptable, there is a class of specialized algorithms, called streaming algorithms, or sketches that can produce results orders-of magnitude faster and with mathematically proven error bounds. For interactive queries there may not be other viable alternatives, and in the case of real-time analysis, sketches are the only known solution.

This package provides a variety of sketches as described below. Wherever a specific type of sketch exists in Apache DataSketches packages for other languages, the sketches will be portable between languages (for platforms with the same endianness).

Building and Installation

Once cloned, the library can be installed by running python -m pip install . in the project root directory, which will also install the necessary dependencies, namely numpy and pybind11[global].

If you prefer to call the setup.py build script directly, you must first install pybind11[global], as well as any other dependencies listed under the build-system section in pyproject.toml.

The library is also available from PyPI via python -m pip install datasketches.

Usage

Having installed the library, loading the Apache Datasketches Library in Python is simple: import datasketches.

Available Sketch Classes

  • KLL (Absolute Error Quantiles)
    • kll_ints_sketch
    • kll_floats_sketch
  • REQ (Relative Error Quantiles)
    • req_ints_sketch
    • req_floats_sketch
  • Frequent Items
    • frequent_strings_sketch
    • Error types are frequent_items_error_type.{NO_FALSE_NEGATIVES | NO_FALSE_POSITIVES}
  • Theta
    • update_theta_sketch
    • compact_theta_sketch (cannot be instantiated directly)
    • theta_union
    • theta_intersection
    • theta_a_not_b
  • HLL
    • hll_sketch
    • hll_union
    • Target HLL types are tgt_hll_type.{HLL_4 | HLL_6 | HLL_8}
  • CPC
    • cpc_sketch
    • cpc_union
  • VarOpt Sampling
    • var_opt_sketch
    • var_opt_union
  • Vector of KLL
    • vector_of_kll_ints_sketches
    • vector_of_kll_floats_sketches

Known Differences from C++

The Python API largely mirrors the C++ API, with a few minor exceptions: The primary known differences are that Python on modern platforms does not support unsigned integer values or numeric values with fewer than 64 bits. As a result, you may not be able to produce identical sketches from within Python as you can with Java and C++. Loading those sketches after they have been serialized from another language will work as expected.

The Vector of KLL object is currently exclusive to python, and holds an array of independent KLL sketches. This is useful for creating a set of KLL sketches over a vector and has been designed to allow input as either a vector or a matrix of multiple vectors.

We have also removed reliance on a builder class for theta sketches as Python allows named arguments to the constructor, not strictly positional arguments.

Developer Instructions

The only developer-specific instructions relate to running unit tests.

Unit tests

The Python unit tests are run with tox. To ensure you have all the needed package, from the package base directory run:

python -m pip install --upgrade tox
tox

License

The Apache DataSketches Library is distrubted under an Apache 2.0 License.

There may be precompiled binaries provided as a convenience and distributed through PyPI via [https://pypi.org/project/datasketches/] contain compiled code from pybind11, which is distributed under a BSD license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

whylogs-datasketches-3.4.0.dev6.tar.gz (656.9 kB view details)

Uploaded Source

Built Distributions

whylogs_datasketches-3.4.0.dev6-cp39-cp39-win_amd64.whl (385.8 kB view details)

Uploaded CPython 3.9Windows x86-64

whylogs_datasketches-3.4.0.dev6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (512.3 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

whylogs_datasketches-3.4.0.dev6-cp39-cp39-macosx_10_9_x86_64.whl (515.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

whylogs_datasketches-3.4.0.dev6-cp38-cp38-win_amd64.whl (405.0 kB view details)

Uploaded CPython 3.8Windows x86-64

whylogs_datasketches-3.4.0.dev6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (510.6 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

whylogs_datasketches-3.4.0.dev6-cp38-cp38-macosx_10_9_x86_64.whl (515.4 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

whylogs_datasketches-3.4.0.dev6-cp37-cp37m-win_amd64.whl (401.0 kB view details)

Uploaded CPython 3.7mWindows x86-64

whylogs_datasketches-3.4.0.dev6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (525.0 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

whylogs_datasketches-3.4.0.dev6-cp37-cp37m-macosx_10_9_x86_64.whl (501.9 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file whylogs-datasketches-3.4.0.dev6.tar.gz.

File metadata

  • Download URL: whylogs-datasketches-3.4.0.dev6.tar.gz
  • Upload date:
  • Size: 656.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs-datasketches-3.4.0.dev6.tar.gz
Algorithm Hash digest
SHA256 a78cc983e728156c0d7b5974f6602bf95fa568b40b87424ac5478cea5ba50fd6
MD5 e9b25966db2d8afa17a4acb036d3cbe4
BLAKE2b-256 c96cb1da7cf5966d78a35247cec7dcf135a117e0e965caaa42285ddf24309def

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: whylogs_datasketches-3.4.0.dev6-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 385.8 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8f7c5127c5160de62be62238ca2636c44092ecfd14556ebb7839b402bec0aea6
MD5 0f1fac2656d7ed456f03532ba3b10880
BLAKE2b-256 7d33d00be24e5aebe6dfc3093b7de63eac088be6ea6bc87d7bbfe32d240b057a

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 81204535446166421fb9b4f5dc2365f95fe774cd36c709c57afcd16a50d512be
MD5 72d8092f440d25d6ad8aeff089c18790
BLAKE2b-256 e26272b9509fa334900dd533f210224609681cf7ddfc479c04f912e8950b0024

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylogs_datasketches-3.4.0.dev6-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 515.5 kB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 863da7c32cb94e1fa3580e1bd74e5535805af8611856609b8f695aa64e45185a
MD5 e645f883053c39043d744f44ab1c6a24
BLAKE2b-256 6a11056ef545ec60c14b5b87b77bbcc9e9dbdd1b05e01e1a28d6365153cbe793

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: whylogs_datasketches-3.4.0.dev6-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 405.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 6740469b6f4712832d4c944c07e6386e5e5f4d520c655502212f09dc106a879e
MD5 29b8e79aaab06d788517ce24aeda3589
BLAKE2b-256 cb74a396ec6a2643b2f1c2626d0b94651c666fe926b466180954b436eb1f6748

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 058a0f2cec8895f46480b0165550519dcd9891bd9a6ef9d3a78c247646438d67
MD5 ae5c9a5933da801a5ee2ccbaaa97e617
BLAKE2b-256 f73e22cb310661307691492540f168a50d8b79ce684023681429bd71891b6989

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylogs_datasketches-3.4.0.dev6-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 515.4 kB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6540e370366feedb2732a0c3337b917d62415ee755725f796e88420362f9e8b5
MD5 965beab7da891a538d32a2df9534f56d
BLAKE2b-256 d648013235e8d2ca98363dcd15f9aa289ad0737f471b9bd4a0f73eb0a35e4734

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: whylogs_datasketches-3.4.0.dev6-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 401.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 134f2ea5dd76f18598bfe7fdd7c6f2b04cbd8e42ab611c40794dcc9560707bc2
MD5 9984f2ad2e781c7fd1c159ac5a0ce080
BLAKE2b-256 48f4c7ccc886ff76bec21b7642e43240893f0c9fb122664cb07a3a7135abdbab

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 99c3ffd23430b707c7bf3027d9306f18cf0bfe355a4160f8c0507c4e1efe93dc
MD5 ed9e15305d75170eb293fc3b019294ef
BLAKE2b-256 13be74471eab097a9c3482424645be9a9fc556837f7c90f35341c148659642c8

See more details on using hashes here.

File details

Details for the file whylogs_datasketches-3.4.0.dev6-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: whylogs_datasketches-3.4.0.dev6-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 501.9 kB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for whylogs_datasketches-3.4.0.dev6-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e113731b199ee8d60c17b024b9c02a9b9a075b75e2dc57848fe725a1c24c5c0
MD5 3ff1dd3f79125c0bcb8f5bd4d0ef61d3
BLAKE2b-256 6a5234f7a720c0086603d1bd3254ff1f1a0f79def4575694390473457cffbd54

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page