Skip to main content

Time series learning with Python.

Project description

Wildboar logo

wildboar

wildboar is a Python module for temporal machine learning and fast distance computations built on top of scikit-learn and numpy distributed under the BSD 3-Clause license.

It is currently maintained by Isak Samsten

Features

Data Classification Regression Explainability Metric Unsupervised Outlier
Repositories ShapeletForestClassifier ShapeletForestRegressor ShapeletForestCounterfactual UCR-suite ShapeletForestTransform IsolationShapeletForest
Classification (wildboar/ucr) ExtraShapeletTreesClassifier ExtraShapeletTreesRegressor KNearestCounterfactual MASS RandomShapeletEmbedding
Regression (wildboar/tsereg) RocketTreeClassifier RocketRegressor PrototypeCounterfactual DTW RocketTransform
Outlier detection (wildboar/outlier:easy) RocketClassifier RandomShapeletRegressor IntervalImportance DDTW IntervalTransform
RandomShapeletClassifier RocketTreeRegressor ShapeletImportance WDTW FeatureTransform
RocketForestClassifier RocketForestRegressor MSM MatrixProfileTransform
IntervalTreeClassifier IntervalTreeRegressor TWE Segmentation
IntervalForestClassifier IntervalForestRegressor LCSS Motif discovery
ProximityTreeClassifier ERP SAX
ProximityForestClassifier EDR PAA
HydraClassifier ADTW MatrixProfileTransform
KNeighborsClassifier HydraTransform
ElasticEnsembleClassifier KMeans with (W)DTW support
DilatedShapeletClassifier KMedoids
DilatedShapeletTransform

See the documentation for examples.

Installation

Binaries

wildboar is available through pip and can be installed with:

pip install wildboar

Universal binaries are compiled for Python 3.8, 3.9, 3.10 and 3.11 running on GNU/Linux, Windows and macOS.

Compilation

If you already have a working installation of numpy, scikit-learn, scipy and cython, compiling and installing wildboar is as simple as:

pip install .

To install the requirements, use:

pip install -r requirements.txt

For complete instructions see the documentation

Usage

from wildboar.ensemble import ShapeletForestClassifier
from wildboar.datasets import load_dataset
x_train, x_test, y_train, y_test = load_dataset("GunPoint", merge_train_test=False)
c = ShapeletForestClassifier()
c.fit(x_train, y_train)
c.score(x_test, y_test)

The User guide includes more detailed usage instructions.

Changelog

The changelog records a history of notable changes to wildboar.

Development

Contributions are welcome! The developer's guide has detailed information about contributing code and more!

In short, pull requests should:

  • be well motivated
  • be formatted using Black
  • add relevant tests
  • add relevant documentation

Source code

You can check the latest sources with the command:

git clone https://github.com/wildboar-foundation/wildboar

Documentation

Citation

If you use wildboar in a scientific publication, I would appreciate citations to the paper:

  • Karlsson, I., Papapetrou, P. Boström, H., 2016. Generalized Random Shapelet Forests. In the Data Mining and Knowledge Discovery Journal

    • ShapeletForestClassifier
  • Isak Samsten, 2020. isaksamsten/wildboar: wildboar. Zenodo. doi:10.5281/zenodo.4264063

  • Karlsson, I., Rebane, J., Papapetrou, P. et al. Locally and globally explainable time series tweaking. Knowl Inf Syst 62, 1671–1700 (2020)

    • ShapeletForestCounterfactual
    • KNearestCounterfactual

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wildboar-1.2.1.tar.gz (3.7 MB view details)

Uploaded Source

Built Distributions

wildboar-1.2.1-cp313-cp313-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.13Windows x86-64

wildboar-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.0 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

wildboar-1.2.1-cp313-cp313-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

wildboar-1.2.1-cp313-cp313-macosx_10_13_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

wildboar-1.2.1-cp313-cp313-macosx_10_13_universal2.whl (7.4 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

wildboar-1.2.1-cp312-cp312-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.12Windows x86-64

wildboar-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

wildboar-1.2.1-cp312-cp312-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

wildboar-1.2.1-cp312-cp312-macosx_10_13_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

wildboar-1.2.1-cp312-cp312-macosx_10_13_universal2.whl (7.4 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

wildboar-1.2.1-cp311-cp311-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.11Windows x86-64

wildboar-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

wildboar-1.2.1-cp311-cp311-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

wildboar-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

wildboar-1.2.1-cp311-cp311-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

wildboar-1.2.1-cp310-cp310-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.10Windows x86-64

wildboar-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

wildboar-1.2.1-cp310-cp310-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

wildboar-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

wildboar-1.2.1-cp310-cp310-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

wildboar-1.2.1-cp39-cp39-win_amd64.whl (2.0 MB view details)

Uploaded CPython 3.9Windows x86-64

wildboar-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

wildboar-1.2.1-cp39-cp39-macosx_11_0_arm64.whl (5.5 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

wildboar-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

wildboar-1.2.1-cp39-cp39-macosx_10_9_universal2.whl (7.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file wildboar-1.2.1.tar.gz.

File metadata

  • Download URL: wildboar-1.2.1.tar.gz
  • Upload date:
  • Size: 3.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for wildboar-1.2.1.tar.gz
Algorithm Hash digest
SHA256 46b7444e0fda567fdfedecb9a844c2f0c4b43815ee6909d4b06eb63d19b6d5e9
MD5 5e55c5047b8fc7b19f49deaae5c59cd2
BLAKE2b-256 9665e7d8eaaacb437fa9eb86dcd5d1f2dd8b2ba1e1404f82b81c21d15c4595bd

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: wildboar-1.2.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for wildboar-1.2.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 33e0177bffc43fce90414c14b3fb188127541a77cf35fa043d0f8cd828332a85
MD5 cf1f3ad0e25701685684c470881c9ede
BLAKE2b-256 570574c4b261274f0c78caedd9e76c8626181cebd38a40eb2b737c03eb94d736

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c51a611e7b377f77193f14d9eb013be2fe4f6ce23e7f381e80ffc5321c0b4a09
MD5 35b4891cdeed6b3258636dfc4ba68b53
BLAKE2b-256 0205af675167abfed7f7012eecb6fdbf3246cc435e11c3a3543f31fd603eb148

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c62380b69f1facc34c8d3385e7c2f114a07987e76dcae78454a7832648f3bbb6
MD5 43492fd4b65e67a838dc441b874f11b7
BLAKE2b-256 509c229e09ebbc5dd035587fc76111925cec30a1bd108778a430983d02201475

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 73fd251eb4027b71eaf5c88a9db0214b6894dca48ae8521be7acfd71ff303629
MD5 5c73bd439ef1aa5354634ae5aaeedf12
BLAKE2b-256 264d3140dbcc9e9371162991383177a8afca8d9661b34e78466402da15857ad3

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 dde8c58a0fda1cebc1af2243a0bb7733e0b33e53798bb84438a585d8c3567442
MD5 38af9d92e49debf1fb4e88bc7b0533f4
BLAKE2b-256 11a04a486554259d7c9c570ab57b4cca0f43804349bd8d8817c06c8266e30317

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: wildboar-1.2.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for wildboar-1.2.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 936b8a9a2abd9786cdd72eed66d6db70083041b9a556ccd8b6c2379a9c412501
MD5 30dc6dc67277762c4c8d4ebe650d62c8
BLAKE2b-256 59cbe35e93c72951166a8878d8b45503a585e3584281ef0dd089b4b183967d4d

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c2f947fc2e2ba0f483af7a5daa01828e836a214c7aa65a95b98f9eccc918e3d7
MD5 9aa3ad6bc8f6c60e984dce4d5e430b0b
BLAKE2b-256 5e6d0fc4ecf13a16f8e597de41a5fcc1909188e61259313a0d56f942c2e99421

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 834a3766df250837b06abe3fbc3dfbb4cbf282d5763f3827dcae05cc149fb192
MD5 2227fe36eded538452965df070ddde96
BLAKE2b-256 a8e53408f8b25ed2f4e69f88e942540df0e4dcc26dd5802327e8a530030aa3cb

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 02f01c5b39b7422cb8cfe0eb1993506e902c5eac3e1d32262c22ee67d46b3c0a
MD5 b3571544fb583ab06801e9612de05a51
BLAKE2b-256 f1f66a6014770654d5c489bb1555c31768dfba053f93dc694da772f91ba74e9c

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 6a1a47728f93a025a11d8b6d586509d32eff85df4650f5713e30f9e8ff643dd7
MD5 1ecb3465f18474f8b74a02c7abca3d5e
BLAKE2b-256 76e71145148e217f50ed685cd10480734abc9913a2e50895e3367fef64463ba1

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: wildboar-1.2.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for wildboar-1.2.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e390ce9ec75ece8113d23419c278f4199f18a4e4a5b6510444f154b31c40f0f
MD5 3b0d268b588e9a37d02ccdf0c0230da5
BLAKE2b-256 6ca65b414ed455a6840b5fcda515b285f41dd713bbcdf0e35515674806456451

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 232908ef99e44a5b3972fc1c91a663c2b47076987c747a7f393072ae6124d892
MD5 71775e320c1e616a9075e287f25fe6dc
BLAKE2b-256 79844b3b417f32bea71c3b24bd92821c27bca2b03f069c00aeef799a1c4cd747

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b559e482a10252053802d779544722f946f89048cbb3e268d237d31ddf48bf66
MD5 0c334a4e2dfbb81f78835c4ba27c70ed
BLAKE2b-256 6a19241906fac797711ed75b7c34f97e08514f6163880295e35adf391315fed5

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 92bc3f248e3e7895908f44d3e21572390df2b0ed9c3b543d98d7e80c9716669d
MD5 867a4ecf03ae547edf4328ad511b9719
BLAKE2b-256 9b71698edda7550060cab3ed248daf5d6eb438b14b4c2ed3bb46e4ae669468ae

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e52ea726c4567f215436e21b902fdeda139b6fac7822bb6ca771e20376ba2fd3
MD5 965988a6372f1151919e6b067e4f6209
BLAKE2b-256 27bb7e21b3c42227b5d39c29f84cfabeb7d06643c2bb89d10fc71953f98a95de

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: wildboar-1.2.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for wildboar-1.2.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 28d454be84e2b267d23d50c564bd586c1643def6cb2e970f73f856a02ce70a28
MD5 d5e7cd1b2b4d636bf28a7f99a88d792e
BLAKE2b-256 80f70cf78d3864debaf3b860eae34c3f577cc6557048ce7d3dd56d8121c657f3

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fbc6c93a294f37a05477bbc12ecb4c66f66f6a8954c35730d54e5b0d2c8e6497
MD5 f4205347e5056e411aeff67ef3157f8e
BLAKE2b-256 84339ddf41570d6ba57abcf4e8dbee63d19101974aab1d36b1efe7b486d77948

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5faad01ab74955aeb1095cbe322eb61e10e479083aa4abd4cf05fdea8e3edcf
MD5 f19747dfa92bfcf2c71e7fafc7cacb5e
BLAKE2b-256 3837c0568ce3c535ccb5dc8e84eba7f51ea3f5e552b6f3c5ea8b42b49bbdd373

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa9398da549fecba13e7f118257cf1d07ac55efe6c84371c3f162402dc51a0b9
MD5 422c6f34707766e7b2a084383f3651f4
BLAKE2b-256 b6ba267bad48d8d2af07d3beeaf65bff4e2016105876c89d72f45c80e9e87971

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3244e943974dd3b687ae074b968f110143c9b82f453667f005581f529755ce48
MD5 aaad859696c5bca2f8e4e4c9b48745e6
BLAKE2b-256 3e2b389bd22866f4938bac5903e3dbd1c33e01a54150d15a19e97c4a790eca9f

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wildboar-1.2.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.0 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.8

File hashes

Hashes for wildboar-1.2.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0675ae3d86402e74789705d06e6141896fcb4605fea07f53870798e3fca6d486
MD5 3177ed8427e5fce50cf2af3ec1f5c793
BLAKE2b-256 841cba2b1ae5bfaf036ca932c17e25110b0116e051c1d0f4a9f723bc3a156056

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f73b85de272e1ceb83c8b15d7f6eb94fedf84694687535b9358cb8d48f9d1325
MD5 16c4312c4e9122ad22a5ec917c5753d4
BLAKE2b-256 8fb0b40f8f537eb414564e54f05228c56ebd766580019c9c554118a8ccabdb3a

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 31cb84be4967d7469512161ac9b67bedb74ae2396e40754e22742e5d23efaa57
MD5 f945fe676b9456b9a9e18f264d7a0653
BLAKE2b-256 561e40100a83430963d3e1829c494d7d08c911a75e98c42603353b5ae53a6087

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6ebe1fa2f019ed91dc60712b2c68daea52d747bd1e9ebba637694f038ea8e6bd
MD5 bd4c1809ebf5b83a18f65c65aa0e71b1
BLAKE2b-256 a3eea3fb856f026b03e705341a264a982bb01e04aaf9c98623307d550febaf59

See more details on using hashes here.

File details

Details for the file wildboar-1.2.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for wildboar-1.2.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1f340683509b73fdd32741e803aba0ac7e2759b5255ca8d4aa025746ee9babf2
MD5 30e1c2f0979800a7b49c4fb3f206da77
BLAKE2b-256 9ca452726630e28ccc6d97968a247f115a885897365c7054b164738fe88ff78f

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page