Skip to main content

Witchery is a powerful Python library that offers various functionalities for code analysis and modification.

Project description

Witchery

A Python Package for Code Analysis and Modification

Witchery is a powerful Python library that offers various functionalities for code analysis and modification. It provides tools to traverse Abstract Syntax Trees (AST) of Python code and perform tasks such as finding defined variables, removing specific variables, identifying local imports, adding function calls, and much more.

Whether you need to analyze code for missing variables, remove certain variables from your codebase, or perform code transformations, Witchery has you covered. It is a versatile utility for developers and programmers seeking to enhance their code analysis and modification capabilities.

With Witchery, you can easily parse Python code, identify used and defined variables, handle imports, and generate code for missing variables, among other useful features. This package is designed to simplify code manipulation tasks and assist in creating cleaner and more efficient Python codebases.

Features:

  • Find defined variables within Python code
  • Remove specific variables from code
  • Identify local imports in code
  • Remove imports of specific modules
  • Add function calls to existing code
  • Find missing variables in code
  • Generate ✨ magic ✨ code to define missing variables
  • and more!

PyPI - Version PyPI - Python Version
Code style: black License: MIT
su6 checks coverage.svg


Table of Contents

Installation

You can install witchery using pip:

pip install witchery

Usage

The witchery library provides several useful methods to work with Python code. Here are the main functions and their purposes:

  1. find_defined_variables(code_str: str) -> set[str]: Parses the given Python code and finds all variables that are defined within. It returns a set of variable names that are defined in the provided Python code.

  2. remove_specific_variables(code: str, to_remove: typing.Iterable[str] = ("db", "database")) -> str: Removes specific variables from the given code. You can specify a list of variable names to be removed, and the function will return the code after removing the specified variables.

  3. has_local_imports(code: str) -> bool: Checks if the given code has local imports. It returns True if local imports are found, and False otherwise.

  4. remove_import(code: str, module_name: typing.Optional[str]) -> str: Removes the import of a specific module from the given code. You can specify the name of the module to remove, and the function will return the code after removing the import of the specified module.

  5. remove_local_imports(code: str) -> str: Removes all local imports from the given code. It returns the code after removing all local imports.

  6. find_function_to_call(code: str, function_call_hint: str) -> typing.Optional[str]: Finds the function to call in the given code based on the function call hint. It returns the name of the function to call if found, or None otherwise.

  7. extract_function_details(function_call: str, default_args: typing.Iterable[str] = DEFAULT_ARGS) -> tuple[str | None, list[str]]: Extracts the function name and arguments from the function call string. It returns a tuple containing the function name and a list of arguments.

  8. add_function_call(code: str, function_call: str, args: typing.Iterable[str] = DEFAULT_ARGS) -> str: Adds a function call to the given code. You can specify the function call string and the arguments for the function call.

  9. find_variables(code_str: str) -> tuple[set[str], set[str]]: Finds all used and defined variables in the given code string. It returns a tuple containing sets of used and defined variables.

  10. find_missing_variables(code: str) -> set[str]: Finds and returns all missing variables in the given code. It returns a set of names of missing variables.

  11. generate_magic_code(missing_vars: set[str]) -> str: Generates code to define missing variables with a do-nothing object. After finding missing variables, it fills them in with an object that does nothing except return itself or an empty string.

Examples

import witchery

# Example 1: Find defined variables in code
code = """
x = 5
y = 10
z = x + y
"""
defined_vars = witchery.find_defined_variables(code)
print(defined_vars)
# Output: {'x', 'y', 'z'}

# Example 2: Remove specific variables from code
code = """
x = 5
y = 10
db = Database()
"""
new_code = witchery.remove_specific_variables(code, to_remove=["x", "db"])
print(new_code)
# Output: "y = 10"

# Example 3: Check if code has local imports
code = "from my_module import my_function"
has_local_imports = witchery.has_local_imports(code)
print(has_local_imports)
# Output: False

code = "from .my_module import my_function"
has_local_imports = witchery.has_local_imports(code)
print(has_local_imports)
# Output: True

# Example 4: Remove import of a specific module from code
code = """
import module_name
from module_name import something
x = module_name.function()
"""
new_code = witchery.remove_import(code, module_name="module_name")
print(new_code)
# Output: "x = module_name.function()"

# do note that this only removes the import, NOT any function calls to it!

# Example 5: Remove all local imports from code
code = """
from .local_module import something
from another_module import func

def my_function():
    return func(), something()
"""
new_code = witchery.remove_local_imports(code)
print(new_code)
# Output:
# from another_module import func
# 
# def my_function():
#     return func(), something()

# do note that this only removes the imports, NOT any function calls to it!

# Example 6: Find the function to call based on the function call hint
code = """
def my_function():
    return 42

x = my_function()
"""
function_to_call = witchery.find_function_to_call(code, "my_function()")  # can be with or without parentheses
print(function_to_call)
# Output: "my_function"

# will be None if the function does not exist in the specified code.

# Example 7: Extract function name and arguments from function call string
function_call = "my_function(x, y, 'z')"
function_name, args = witchery.extract_function_details(function_call)
print(function_name)
# Output: "my_function"
print(args)
# Output: ['x', 'y', "'z'"]

# Example 8: Add a function call to code
code = """
def add(a, b):
    return a + b

result = add(3, 5)
"""
new_code = witchery.add_function_call(code, function_call="add(x, y)")
print(new_code)
# Output: 
# def add(a, b):
#     return a + b
# add(x, y)
# result = add(3, 5)

# The call will be placed right below the function definition.

# Example 9: Find used and defined variables in code
code = """
x = 5
y = x + z
result = x * y
"""
used_vars, defined_vars = witchery.find_variables(code, with_builtins=False)
print(used_vars)
# Output: {'x', 'y', 'z'}
print(defined_vars)
# Output: {'x', 'y', 'result'}  # will be a lot longer if with_builtins = True

# Example 10: Find missing variables in code
code = """
x = 5
result = x * y
"""
missing_vars = witchery.find_missing_variables(code)
print(missing_vars)
# Output: {'y'}

# Example 11: Generate magic code to define missing variables
missing_vars = {'y', 'z'}
magic_code = witchery.generate_magic_code(missing_vars)
print(magic_code)
# Output: """
# class Empty:
#     ...
#
# empty = Empty()
# y = empty; z = empty;
# """

License

witchery is distributed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

witchery-0.1.3.tar.gz (48.9 kB view details)

Uploaded Source

Built Distribution

witchery-0.1.3-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file witchery-0.1.3.tar.gz.

File metadata

  • Download URL: witchery-0.1.3.tar.gz
  • Upload date:
  • Size: 48.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.1

File hashes

Hashes for witchery-0.1.3.tar.gz
Algorithm Hash digest
SHA256 3343e9b81d7a92ec2f8d6d85bf26be8e084276232983e98600ad3f84a48ca538
MD5 2b5e47088259067cb6df933333abc815
BLAKE2b-256 b098996bbed8bd06d5886caea5b75994c7babb1cb7fca94f7048c7458fe9fdfe

See more details on using hashes here.

File details

Details for the file witchery-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: witchery-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-httpx/0.24.1

File hashes

Hashes for witchery-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 34a7aeb4b9f305de4bdbe7abe4964c08929b63030c11d0743ddd25eab152063f
MD5 17eefa213bb80cdc13f7cd65ef8e98c5
BLAKE2b-256 5794f0b10eb35ebb00c386f852fad0805bba694f746387a4902aaa2d28d2f358

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page