Skip to main content

Water Network Tool for Resilience

Project description

<h1> <img src=”https://raw.githubusercontent.com/usepa/wntr/main/documentation/_static/logo.jpg” width=”375”> </h1><br>

[![build](https://github.com/USEPA/WNTR/workflows/build/badge.svg)](https://github.com/USEPA/WNTR/actions/workflows/build_tests.yml) [![Coverage Status](https://coveralls.io/repos/github/USEPA/WNTR/badge.svg?branch=main)](https://coveralls.io/github/USEPA/WNTR?branch=main) [![Documentation Status](https://github.com/USEPA/WNTR/actions/workflows/build_deploy_pages.yml/badge.svg)](https://github.com/usepa/wntr/actions/workflows/build_deploy_pages.yml)

The Water Network Tool for Resilience (WNTR) is a Python package designed to simulate and analyze resilience of water distribution networks. The software includes capability to:

  • Generate water network models

  • Modify network structure and operations

  • Add disruptive events including pipe leaks

  • Add response/repair strategies

  • Simulate pressure dependent demand and demand-driven hydraulics

  • Simulate water quality

  • Evaluate resilience

  • Visualize results

For more information, go to https://usepa.github.io/WNTR/

Installation

The latest release of WNTR can be installed from PyPI or Anaconda using one of the following commands in a command line or PowerShell prompt.

See [installation instructions](https://usepa.github.io/WNTR/installation.html) for more details.

Citing WNTR

To cite WNTR, use one of the following references:

  • Klise, K.A., Hart, D.B., Bynum, M., Hogge, J., Haxton, T., Murray, R., Burkhardt, J. (2020). Water Network Tool for Resilience (WNTR) User Manual: Version 0.2.3. U.S. EPA Office of Research and Development, Washington, DC, EPA/600/R-20/185, 82p.

  • Klise, K.A., Murray, R., Haxton, T. (2018). An overview of the Water Network Tool for Resilience (WNTR), In Proceedings of the 1st International WDSA/CCWI Joint Conference, Kingston, Ontario, Canada, July 23-25, 075, 8p.

  • Klise, K.A., Bynum, M., Moriarty, D., Murray, R. (2017). A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study, Environmental Modelling and Software, 95, 420-431, doi: 10.1016/j.envsoft.2017.06.022

License

WNTR is released under the Revised BSD license. See [LICENSE.md](https://github.com/USEPA/WNTR/blob/main/LICENSE.md) for more details.

Organization

Directories
  • wntr - Python package

  • documentation - User manual

  • examples - Examples and network files

Contact

EPA Disclaimer

The United States Environmental Protection Agency (EPA) GitHub project code is provided on an “as is” basis and the user assumes responsibility for its use. EPA has relinquished control of the information and no longer has responsibility to protect the integrity , confidentiality, or availability of the information. Any reference to specific commercial products, processes, or services by service mark, trademark, manufacturer, or otherwise, does not constitute or imply their endorsement, recommendation or favoring by EPA. The EPA seal and logo shall not be used in any manner to imply endorsement of any commercial product or activity by EPA or the United States Government.

Sandia Funding Statement

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

wntr-1.3.2.tar.gz (2.2 MB view details)

Uploaded Source

Built Distributions

wntr-1.3.2-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12Windows x86-64

wntr-1.3.2-cp312-cp312-manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12

wntr-1.3.2-cp312-cp312-macosx_14_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.12macOS 14.0+ ARM64

wntr-1.3.2-cp312-cp312-macosx_13_0_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12macOS 13.0+ x86-64

wntr-1.3.2-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11Windows x86-64

wntr-1.3.2-cp311-cp311-manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11

wntr-1.3.2-cp311-cp311-macosx_14_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.11macOS 14.0+ ARM64

wntr-1.3.2-cp311-cp311-macosx_13_0_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11macOS 13.0+ x86-64

wntr-1.3.2-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10Windows x86-64

wntr-1.3.2-cp310-cp310-manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10

wntr-1.3.2-cp310-cp310-macosx_14_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.10macOS 14.0+ ARM64

wntr-1.3.2-cp310-cp310-macosx_13_0_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

wntr-1.3.2-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9Windows x86-64

wntr-1.3.2-cp39-cp39-manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9

wntr-1.3.2-cp39-cp39-macosx_14_0_arm64.whl (2.4 MB view details)

Uploaded CPython 3.9macOS 14.0+ ARM64

wntr-1.3.2-cp39-cp39-macosx_13_0_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

File details

Details for the file wntr-1.3.2.tar.gz.

File metadata

  • Download URL: wntr-1.3.2.tar.gz
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.9

File hashes

Hashes for wntr-1.3.2.tar.gz
Algorithm Hash digest
SHA256 34a8464d33b1446161c44abe0af0eb87e4684b2fea42aad612962dbed91e39c7
MD5 7bbc54af956c632f948d161150610493
BLAKE2b-256 92a6d8fc04ed144ac886b0b7f353f7743cd25af38e577a170dc65796d1d68e1a

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: wntr-1.3.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.9

File hashes

Hashes for wntr-1.3.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 37e398fbf46d07c1e0e032fb29e37d6020bd9ccb7fc36fd6b086f627cf1eae99
MD5 8e3d7cd7b92de1ca5f1bd002fe821eec
BLAKE2b-256 d6d7b8706a7349400eff1e0d2f76e50f3044c727a8a690f317c7fb8f46dbe2a6

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp312-cp312-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp312-cp312-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d837f05a899ccc33beaea5035500150e5ad96d070954929f506d19cf56b15972
MD5 70422e7367dfcb8a03efe1e47209b37d
BLAKE2b-256 4ba7c2d3d99de8e08c51e9cd71f4d5cf4fed42da3057198aa6441449336ab8ae

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp312-cp312-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp312-cp312-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 79adfd2b27979b84a3b4546a5d43bba45db8cd37a0c77993ce4573272aa16967
MD5 4782d811a7c6d66b71771a5568f4dfcf
BLAKE2b-256 9eb1a4e7ffa09606a46312e65fa6bf94696f74243ff7b5ebf2c3eab6efe7110f

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 5148d2e1a3a8b11a53f0d8ec1a7403fca6592a7e9f0b61e0d0b5b6e15deab20b
MD5 093ada14bf28ea5e7eb7cd31851da368
BLAKE2b-256 0af8370e516492cd7142c86163a29c0f92529f9c45b1b35f4b1c13c7eaf7bf9a

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: wntr-1.3.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.9

File hashes

Hashes for wntr-1.3.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f934e53a9a75e88a17520674d2f0ac297a4bca2c1803d726e917209dcbf9350d
MD5 6590ba6d3396ef841d7d7e57ed435762
BLAKE2b-256 832dac33f8c59671e7606f53ef3ad7c1b8fdef3665c149d016685190fc958cca

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp311-cp311-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp311-cp311-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 510d79f35fd54a76dda60eba9dd0a19e496a40cc84ba2ad4098cdbebd70d9037
MD5 0e093bdc7d03b6dca09037f2f077c47b
BLAKE2b-256 0bc7f187f4a3e1e521debfe44a28582bbda6663853ff1524220169800b8a35e8

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp311-cp311-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp311-cp311-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 9c4e7657ce46da82689bbd91846d1538d53dc02f6bc97915f4bfcb989c87a0e4
MD5 7b29ac1911ccde5e51e9751c657f26db
BLAKE2b-256 f26aa68288921724dca8e44d1eb580282e8d1b47ed80f31331e14c3c00f135eb

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 558dd87f7a22f1f4b410f5d3fd591b409f3003ffc833452f25b71f9e31ce72c0
MD5 437461e2e2fdab3ac5c458600c4d0704
BLAKE2b-256 f822a9890b5573cf2babf3675f5cb0557cb616779b906ed26f4f32172403a039

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: wntr-1.3.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.9

File hashes

Hashes for wntr-1.3.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a1aa24a522b0150fc1a6dcdbc4fcca052aae25a558038102b0848031ec3d7388
MD5 67a1cc91d313e2e4b8f96eefee8d36d0
BLAKE2b-256 1d92d04358a5f6079968077fb6028a0aca746a17c51aa4fd5cfd8665abd2261d

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp310-cp310-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp310-cp310-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f83f0584641d7a19de96d9bc610ad53e0d53c1287827426ed7c5640e5367053c
MD5 d6974e72a35bc0351f46d4fddb122d94
BLAKE2b-256 4a16fbc5f7e9169e1a057929bc5c7d5d7b8941190e5921a0d24d1c585f5e5a94

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp310-cp310-macosx_14_0_arm64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp310-cp310-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 8114dab2f6ee52fc74da53cf9b74d7efd19ce82c11bff4bd67d630c9f97d35e6
MD5 f41bf36608db426f9bf7844fa56568f8
BLAKE2b-256 5e96e6b7b09925fad98efc1944993f34bd6ca7531a5a4bedde698f7241358cc7

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 c4cea8c55e018366ee189430349a21dfedf58f4062aef52a8857dae10512de96
MD5 11352f385f42245c9647831ee7251b65
BLAKE2b-256 ecd495895a786532504a9a17ca055b2a7368f30e1e22ce31237e97496c57168a

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: wntr-1.3.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.9

File hashes

Hashes for wntr-1.3.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 75bd24d86ad3cf7d9a86c23545ee460c256208fc96b7eb79c4c4ef4d5b7ebc00
MD5 ec6e9da05a33031535237a61a3578d00
BLAKE2b-256 daea6e600db1dd09df40f0f410c63039fb088a163b5263f50292fbe790c1bd4d

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp39-cp39-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp39-cp39-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 62bcb9ade1d23fb6f0cea1e2ce22a0877d8f0a07a1f3082430fe1fece89a88b6
MD5 f15e324b05341536d605d773d6e566c9
BLAKE2b-256 917261633578611ec198e1eec627b7d7b43e7d61952075aacd56d607f792f0d9

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp39-cp39-macosx_14_0_arm64.whl.

File metadata

  • Download URL: wntr-1.3.2-cp39-cp39-macosx_14_0_arm64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, macOS 14.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.9

File hashes

Hashes for wntr-1.3.2-cp39-cp39-macosx_14_0_arm64.whl
Algorithm Hash digest
SHA256 7bb4c3e758d16d5e60d7fcdc579a79e3f4727193f227811efddececa25416dba
MD5 ca3814fc479f8e53036a0b8bd7a7e4f5
BLAKE2b-256 791f955a46529a0fd1d1df4d1367718241b40ea073a95723d1d3fd0138d28031

See more details on using hashes here.

File details

Details for the file wntr-1.3.2-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for wntr-1.3.2-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 25b983a54fe199c84e1b0ead7e4519025a89bd4d29dfbbcab76c8ee58ac649f8
MD5 7ee34d9a6bd3e56064a8f5340d42abe3
BLAKE2b-256 ad9e3f845f870dfb407d4944530d1e2b2dfbb8bcf82360017ed2dac5b1481d08

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page