Calculate weighted OWA functions and extending bivariate means
Project description
wowa
This package calculates weighted OWA functions and extending bivariate means" Functions are:
- py_WAM: WOWATree callback function if sorting is needed in general
- py_OWA: WOWATree callback function if no sorting is needed when used in the tree
- WOWATree: symmetric base aggregator
- WAn: processes the tree
- weightedOWAQuantifierBuild: calculates spline knots and coefficients for later use in weightedOWAQuantifier
- weightedOWAQuantifier: Calculates the value of the WOWA, with quantifier function obtained in weightedOWAQuantifierBuild
- ImplicitWOWA: Calculates implicit Weighted OWA function
- WAM: weighted arithmetic mean function
- OWA: ordered weighted averaging function
Documentation
Installation
To install type:
$ pip install wowa
Usage of py_OWA( n, x, w)
from wowa import py_OWA
WOWATree callback function if sorting is needed in general
Parameters
Input parameters:
n: size of arrays
x[]: NumPy array of size n, float
w[]: NumPy array of size n, float
Output parameters:
double y: aggregated sum
Usage of py_WAM( n, x, w)
from wowa import py_WAM
WOWATree callback function if no sorting is needed when used in the tree
Parameters
Input parameters:
n: size of arrays
x[]: NumPy array of size n, float
w[]: NumPy array of size n, float
Output parameters:
double y: aggregated sum
Usage of WOWATree( x, p, w, cb, L)
from wowa import WOWATree
Symmetric base aggregator. The weights must add to one and be non-negative.
Parameters
Input parameters:
x[]: NumPy array of inputs, size n, float
p[]: NumPy array of weights of inputs x[], size n, float
w[]: NumPy array of weights for OWA, size n, float
cb: Nallback function. Either pre-defined py_OWA() or py_WAM() or user defined of type float(ch*)(int, float[], float[], int)
L: Number of binary tree levels. Run time = O[(n-1)L]
Output parameters:
y: weightedf, double
Usage of WAn( x, w, L, F)
from wowa import WAn
Parameters
Input parameters:
x[]: NumPy array of inputs, size n, float
w[]: NumPy array of weights for OWA, size n, float
L: Number of binary tree levels
F: User defined callback function of type float(*F)( float, float)
Output parameters:
y: result of tree processing, double
Usage of weightedOWAQuantifierBuild( p, w)
from wowa import weightedOWAQuantifierBuild
Parameters
Input parameters:
p[]: NumPy array of weights of inputs x[], size n, float
w[]: NumPy array of weights for OWA, size n, float
Output parameters:
spline: the spline knots and coefficients for later use in weightedOWAQuantifier
T: the number of knots in the monotone spline
Usage of weightedOWAQuantifier( x, p, w, spline, T);
from wowa import weightedOWAQuantifier
Calculates the value of the WOWA, with quantifier function obtained in weightedOWAQuantifierBuild
Parameters
Input parameters:
x[]: NumPy array of inputs, size n, float
p[]: NumPy array of weights of inputs x[], size n, float
w[]: NumPy array of weights for OWA, size n, float
spline[]: keeps the spline knots and coefficients. Output from weightedOWAQuantifierBuild
T: the number of knots in the monotone spline
Output parameters:
y: double
Usage of ImplicitWOWA x, p, w)
from wowa import ImplicitWOWA
Calculates implicit Weighted OWA function
Parameters
Input parameters:
x[]: NumPy array of inputs, size n, float
p[]: NumPy array of weights of inputs x[], size n, float
w[]: NumPy array of weights for OWA, size n, float
Output parameters:
y: float
Usage of WAM( n, x, w)
from wowa import WAM
Weighted arithmetic mean function
Parameters
Input parameters:
n: size of arrays
x[]: NumPy array of size n, float
w[]: NumPy array of size n, float
Output parameters:
y: aggregated sum, float
Usage of OWA( n, x, w)
from wowa import OWA
Ordered weighted averaging function
Parameters
Input parameters:
n: size of arrays
x[]: NumPy array of size n, float
w[]: NumPy array of size n, float
Output parameters:
y: aggregated sum, float
Test
To unit test type:
$ test/test.py
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file wowa-1.12.tar.gz.
File metadata
- Download URL: wowa-1.12.tar.gz
- Upload date:
- Size: 409.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
78b3dcd7456d2235198a4093712da2465545e8bea841a88a5cdf56ddcbdf1b3e
|
|
| MD5 |
4926a4326e9f9dac240cebcac61bfbf6
|
|
| BLAKE2b-256 |
3a7449d0d13113d143ddf4d015f44f383127cebe3497bce3a27beb1c3902c402
|
File details
Details for the file wowa-1.12-cp39-cp39-macosx_10_9_x86_64.whl.
File metadata
- Download URL: wowa-1.12-cp39-cp39-macosx_10_9_x86_64.whl
- Upload date:
- Size: 19.3 kB
- Tags: CPython 3.9, macOS 10.9+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.26.0 requests-toolbelt/0.9.1 urllib3/1.26.7 tqdm/4.62.3 importlib-metadata/4.8.1 keyring/23.1.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
d2c51e49d6ccc42002895f0e0c5cd3010bee03aca5e58d9003924cc14d9e4f58
|
|
| MD5 |
fc378664d867cd44df6ee5c2b440bbc5
|
|
| BLAKE2b-256 |
cf70edac0d6bf73bc2d94af4b2f84d5baf1ebd9a8200faf6bb800c37951f52ff
|