librdkafka-powered client for Kafka for python with (hopefully) more handful API
Project description
Wunderkafka
The power of librdkafka for humans pythons
Wunderkafka provides a handful of facades for C-powered consumer/producer. It's built on top of the confluent-kafka
For a quick view on what is going on, please check Quickstart and Documentation
Installation process described here
Features
#TypeSafe librdkafka config
Instead of passing just a dict
to consumer/producer config, the pydantic-powered config is used.
It is extracted directly from librdkafka's CONFIGURATION.md with some rough parsing.
Confluent & Cloudera Schema Registry support
Confluent is used as-is, but hortonworks/cloudera schema registry client and (de)serialization protocol are implemented as well (no "admin" methods support).
Building Kit
Wunderkafka allows you to relatively simply build your own transport for message (de)serialization and eliminate boilerplates for typical cases.
Pre-defined config models
import os
from functools import partial
from pydantic import field_validator, Field
from wunderkafka.time import now
from wunderkafka import SRConfig, ConsumerConfig, SecurityProtocol, AvroConsumer
# If you are a fan of 12 factors, you may want to config via env variables
class OverridenSRConfig(SRConfig):
url: str = Field(alias='SCHEMA_REGISTRY_URL')
@field_validator('sasl_username')
@classmethod
def from_env(cls, v) -> str:
# And to use 'native' kerberos envs
return '{0}@{1}'.format(os.environ.get('KRB5_USER'), os.environ.get('KRB5_REALM'))
# Or you want to override some defaults by default (pun intended)
class OverridenConfig(ConsumerConfig):
# Consumer which do not commit messages automatically
enable_auto_commit: bool = False
# And knows nothing after restart due to new gid.
group_id: str = 'wunderkafka-{0}'.format(now())
# More 12 factors
bootstrap_servers: str = Field(env='BOOTSTRAP_SERVER')
security_protocol: SecurityProtocol = SecurityProtocol.sasl_ssl
sasl_kerberos_kinit_cmd: str = ''
sr: SRConfig = OverridenSRConfig()
@field_validator('sasl_kerberos_kinit_cmd')
@classmethod
def format_keytab(cls, v) -> str:
if not v:
return 'kinit {0}@{1} -k -t {0}.keytab'.format(os.environ.get('KRB5_USER'), os.environ.get('KRB5_REALM'))
# Still allowing to set it manually
return str(v)
# After this, you can `partial` your own Producer/Consumer, something like...
MyConsumer = partial(AvroConsumer, config=OverridenConfig())
# OR
class MyConsumer(AvroConsumer):
def __init__(self, config: ConsumerConfig = OverridenConfig()):
super().__init__(config)
Building your own transport
from typing import Optional
from pydantic import Field
from wunderkafka.config.generated import enums
from wunderkafka.consumers.bytes import BytesConsumer
from wunderkafka.schema_registry import ClouderaSRClient
from wunderkafka.hotfixes.watchdog import check_watchdog
from wunderkafka.serdes.headers import ConfluentClouderaHeadersHandler
from wunderkafka.consumers.constructor import HighLevelDeserializingConsumer
from wunderkafka.schema_registry.cache import SimpleCache
from wunderkafka.schema_registry.transport import KerberizableHTTPClient
from wunderkafka.serdes.avro.deserializers import FastAvroDeserializer
from wunderkafka import SRConfig, ConsumerConfig, SecurityProtocol
class SRConfig(SRConfig):
url: str = Field(alias="SCHEMA_REGISTRY_URL")
security_protocol: SecurityProtocol = SecurityProtocol.sasl_ssl
sasl_mechanism: str = "SCRAM-SHA-512"
sasl_username: str = Field(alias="SASL_USERNAME")
sasl_password: str = Field(alias="SASL_PASSWORD")
class OverridenConsumerConfig(ConsumerConfig):
enable_auto_commit: bool = False
auto_offset_reset: enums.AutoOffsetReset = enums.AutoOffsetReset.earliest
bootstrap_servers: str = Field(env="BOOTSTRAP_SERVERS")
security_protocol: SecurityProtocol = SecurityProtocol.sasl_ssl
sasl_mechanism: str = "SCRAM-SHA-512"
sasl_username: str = Field(alias="SASL_USERNAME")
sasl_password: str = Field(alias="SASL_PASSWORD")
sr: SRConfig = Field(default_factory=SRConfig)
# Pydantic/FastAPI style, but you can inherit from `HighLevelDeserializingConsumer` directly
def MyAvroConsumer(
config: Optional[ConsumerConfig] = None,
) -> HighLevelDeserializingConsumer:
config = config or OverridenConsumerConfig()
config, watchdog = check_watchdog(config)
return HighLevelDeserializingConsumer(
consumer=BytesConsumer(config, watchdog),
schema_registry=ClouderaSRClient(KerberizableHTTPClient(config.sr), SimpleCache()),
headers_handler=ConfluentClouderaHeadersHandler().parse,
deserializer=FastAvroDeserializer(),
)
Avro on-the-fly schema derivation
Supports dataclasses
and pydantic.BaseModel
for avro serialization powered by dataclasses-avroschema and some rough "metaprogramming":
# dataclass to AVRO schema example
from dataclasses import dataclass
from dataclasses_avroschema import AvroModel
@dataclass
class SomeData(AvroModel):
field1: int
field2: str
for a topic topic_name
will become
{
"type": "record",
"name": "topic_name_value",
"fields": [
{
"name": "field1",
"type": "long"
},
{
"name": "field2",
"type": "string"
}
]
}
and
# pydantic.BaseModel to AVRO schema example
from typing import Optional
from pydantic import BaseModel
class Event(BaseModel):
id: Optional[int]
ts: Optional[int] = None
class Meta:
namespace = "any.data"
for a topic topic_name
will become
{
"type": "record",
"name": "topic_name_value",
"namespace": "any.data",
"fields": [
{
"type": ["long", "null"],
"name": "id"
},
{
"type": ["null", "long"],
"name": "ts",
"default": null
}
]
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file wunderkafka-0.16.0.tar.gz
.
File metadata
- Download URL: wunderkafka-0.16.0.tar.gz
- Upload date:
- Size: 69.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ebb1c0f12f499427b61bacd355907bfec7482bc42c370615b23253f73ea19f7c |
|
MD5 | 211ef6410c0b116747669ecf7f1611da |
|
BLAKE2b-256 | 38f156da954ec3a6bd18cb54fa2e7b08cd5eab00da06c318f9d0066496acd1a2 |
File details
Details for the file wunderkafka-0.16.0-py3-none-any.whl
.
File metadata
- Download URL: wunderkafka-0.16.0-py3-none-any.whl
- Upload date:
- Size: 79.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 897019d3cf03000bf840e68602e7f4de4e01eb7a2d1b0e1e942ca50387b02e69 |
|
MD5 | c808d879112acb65aa2ad4f926dfb55d |
|
BLAKE2b-256 | 2cb5b0840269fa19fbb3e1a836b0f17324d7a41d36ba43e0a99e916fc4c7fe79 |