Skip to main content

Confluent's Python client for Apache Kafka

Project description

[!WARNING] Due to an error in which we included dependency changes to a recent patch release, Confluent recommends users to refrain from upgrading to 2.6.2 of Confluent Kafka. Confluent will release a new minor version, 2.7.0, where the dependency changes will be appropriately included. Users who have already upgraded to 2.6.2 and made the required dependency changes are free to remain on that version and are recommended to upgrade to 2.7.0 when that version is available. Upon the release of 2.7.0, the 2.6.2 version will be marked deprecated. We apologize for the inconvenience and appreciate the feedback that we have gotten from the community.

Confluent's Python Client for Apache KafkaTM

confluent-kafka-python provides a high-level Producer, Consumer and AdminClient compatible with all Apache KafkaTM brokers >= v0.8, Confluent Cloud and Confluent Platform. The client is:

  • Reliable - It's a wrapper around librdkafka (provided automatically via binary wheels) which is widely deployed in a diverse set of production scenarios. It's tested using the same set of system tests as the Java client and more. It's supported by Confluent.

  • Performant - Performance is a key design consideration. Maximum throughput is on par with the Java client for larger message sizes (where the overhead of the Python interpreter has less impact). Latency is on par with the Java client.

  • Future proof - Confluent, founded by the creators of Kafka, is building a streaming platform with Apache Kafka at its core. It's high priority for us that client features keep pace with core Apache Kafka and components of the Confluent Platform.

Usage

For a step-by-step guide on using the client see Getting Started with Apache Kafka and Python.

Aditional examples can be found in the examples directory or the confluentinc/examples github repo, which include demonstration of:

  • Exactly once data processing using the transactional API.
  • Integration with asyncio.
  • (De)serializing Protobuf, JSON, and Avro data with Confluent Schema Registry integration.
  • Confluent Cloud configuration.

Also refer to the API documentation.

Finally, the tests are useful as a reference for example usage.

Basic Producer Example

from confluent_kafka import Producer

p = Producer({'bootstrap.servers': 'mybroker1,mybroker2'})

def delivery_report(err, msg):
    """ Called once for each message produced to indicate delivery result.
        Triggered by poll() or flush(). """
    if err is not None:
        print('Message delivery failed: {}'.format(err))
    else:
        print('Message delivered to {} [{}]'.format(msg.topic(), msg.partition()))

for data in some_data_source:
    # Trigger any available delivery report callbacks from previous produce() calls
    p.poll(0)

    # Asynchronously produce a message. The delivery report callback will
    # be triggered from the call to poll() above, or flush() below, when the
    # message has been successfully delivered or failed permanently.
    p.produce('mytopic', data.encode('utf-8'), callback=delivery_report)

# Wait for any outstanding messages to be delivered and delivery report
# callbacks to be triggered.
p.flush()

For a discussion on the poll based producer API, refer to the Integrating Apache Kafka With Python Asyncio Web Applications blog post.

Basic Consumer Example

from confluent_kafka import Consumer

c = Consumer({
    'bootstrap.servers': 'mybroker',
    'group.id': 'mygroup',
    'auto.offset.reset': 'earliest'
})

c.subscribe(['mytopic'])

while True:
    msg = c.poll(1.0)

    if msg is None:
        continue
    if msg.error():
        print("Consumer error: {}".format(msg.error()))
        continue

    print('Received message: {}'.format(msg.value().decode('utf-8')))

c.close()

Basic AdminClient Example

Create topics:

from confluent_kafka.admin import AdminClient, NewTopic

a = AdminClient({'bootstrap.servers': 'mybroker'})

new_topics = [NewTopic(topic, num_partitions=3, replication_factor=1) for topic in ["topic1", "topic2"]]
# Note: In a multi-cluster production scenario, it is more typical to use a replication_factor of 3 for durability.

# Call create_topics to asynchronously create topics. A dict
# of <topic,future> is returned.
fs = a.create_topics(new_topics)

# Wait for each operation to finish.
for topic, f in fs.items():
    try:
        f.result()  # The result itself is None
        print("Topic {} created".format(topic))
    except Exception as e:
        print("Failed to create topic {}: {}".format(topic, e))

Thread Safety

The Producer, Consumer and AdminClient are all thread safe.

Install

Install self-contained binary wheels

$ pip install confluent-kafka

NOTE: The pre-built Linux wheels do NOT contain SASL Kerberos/GSSAPI support. If you need SASL Kerberos/GSSAPI support you must install librdkafka and its dependencies using the repositories below and then build confluent-kafka using the instructions in the "Install from source" section below.

To use Schema Registry with the Avro serializer/deserializer:

$ pip install "confluent-kafka[avro,schemaregistry]"

To use Schema Registry with the JSON serializer/deserializer:

$ pip install "confluent-kafka[json,schemaregistry]"

To use Schema Registry with the Protobuf serializer/deserializer:

$ pip install "confluent-kafka[protobuf,schemaregistry]"

When using Data Contract rules (including CSFLE) add the rulesextra, e.g.:

$ pip install "confluent-kafka[avro,schemaregistry,rules]"

Install from source

For source install, see the Install from source section in INSTALL.md.

Broker Compatibility

The Python client (as well as the underlying C library librdkafka) supports all broker versions >= 0.8. But due to the nature of the Kafka protocol in broker versions 0.8 and 0.9 it is not safe for a client to assume what protocol version is actually supported by the broker, thus you will need to hint the Python client what protocol version it may use. This is done through two configuration settings:

  • broker.version.fallback=YOUR_BROKER_VERSION (default 0.9.0.1)
  • api.version.request=true|false (default true)

When using a Kafka 0.10 broker or later you don't need to do anything (api.version.request=true is the default). If you use Kafka broker 0.9 or 0.8 you must set api.version.request=false and set broker.version.fallback to your broker version, e.g broker.version.fallback=0.9.0.1.

More info here: https://github.com/edenhill/librdkafka/wiki/Broker-version-compatibility

SSL certificates

If you're connecting to a Kafka cluster through SSL you will need to configure the client with 'security.protocol': 'SSL' (or 'SASL_SSL' if SASL authentication is used).

The client will use CA certificates to verify the broker's certificate. The embedded OpenSSL library will look for CA certificates in /usr/lib/ssl/certs/ or /usr/lib/ssl/cacert.pem. CA certificates are typically provided by the Linux distribution's ca-certificates package which needs to be installed through apt, yum, et.al.

If your system stores CA certificates in another location you will need to configure the client with 'ssl.ca.location': '/path/to/cacert.pem'.

Alternatively, the CA certificates can be provided by the certifi Python package. To use certifi, add an import certifi line and configure the client's CA location with 'ssl.ca.location': certifi.where().

License

Apache License v2.0

KAFKA is a registered trademark of The Apache Software Foundation and has been licensed for use by confluent-kafka-python. confluent-kafka-python has no affiliation with and is not endorsed by The Apache Software Foundation.

Developer Notes

Instructions on building and testing confluent-kafka-python can be found here.

Confluent Cloud

For a step-by-step guide on using the Python client with Confluent Cloud see Getting Started with Apache Kafka and Python on Confluent Developer.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

confluent_kafka-2.11.0.tar.gz (224.8 kB view details)

Uploaded Source

Built Distributions

confluent_kafka-2.11.0-cp313-cp313t-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp313-cp313-win_amd64.whl (4.1 MB view details)

Uploaded CPython 3.13Windows x86-64

confluent_kafka-2.11.0-cp313-cp313-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp313-cp313-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp313-cp313-macosx_13_0_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.13macOS 13.0+ x86-64

confluent_kafka-2.11.0-cp313-cp313-macosx_13_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.13macOS 13.0+ ARM64

confluent_kafka-2.11.0-cp312-cp312-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.12Windows x86-64

confluent_kafka-2.11.0-cp312-cp312-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp312-cp312-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp312-cp312-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

confluent_kafka-2.11.0-cp312-cp312-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

confluent_kafka-2.11.0-cp311-cp311-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.11Windows x86-64

confluent_kafka-2.11.0-cp311-cp311-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp311-cp311-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

confluent_kafka-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

confluent_kafka-2.11.0-cp310-cp310-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.10Windows x86-64

confluent_kafka-2.11.0-cp310-cp310-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp310-cp310-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

confluent_kafka-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

confluent_kafka-2.11.0-cp39-cp39-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.9Windows x86-64

confluent_kafka-2.11.0-cp39-cp39-manylinux_2_28_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp39-cp39-manylinux_2_28_aarch64.whl (15.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

confluent_kafka-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

confluent_kafka-2.11.0-cp38-cp38-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.8Windows x86-64

confluent_kafka-2.11.0-cp38-cp38-manylinux_2_28_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp38-cp38-manylinux_2_28_aarch64.whl (15.6 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ ARM64

confluent_kafka-2.11.0-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

confluent_kafka-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

confluent_kafka-2.11.0-cp37-cp37m-win_amd64.whl (4.0 MB view details)

Uploaded CPython 3.7mWindows x86-64

confluent_kafka-2.11.0-cp37-cp37m-manylinux_2_28_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.28+ x86-64

confluent_kafka-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

File details

Details for the file confluent_kafka-2.11.0.tar.gz.

File metadata

  • Download URL: confluent_kafka-2.11.0.tar.gz
  • Upload date:
  • Size: 224.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.3

File hashes

Hashes for confluent_kafka-2.11.0.tar.gz
Algorithm Hash digest
SHA256 d95512838eebd42a4657ce891dfa32bcbc06906e3391b328de24f7731b0c2755
MD5 792ce019a413424fb23b855dec9040e5
BLAKE2b-256 4a724dcfb7842f6a99fa6fd07afd8097b06040c240fd0a70e90b336bf0608156

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp313-cp313t-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp313-cp313t-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9f44a476241a81e6b3259d3f3f00aa0e94ed64a924131f83cb3b640ecdfcd633
MD5 21ade08130ddf129128e39b29497cce8
BLAKE2b-256 b2110b5ef56d9d024ddb01a97ac36dbcd8c3105ae3ca76396429a64651e5b5dd

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 6d6ec6e791b1c97668ff0823dff1dc005ab418b353a430fede7b5cd6c5490497
MD5 6a9120ccfeeb0c166cde9a60d53c78df
BLAKE2b-256 1aa6a5efb07b25bdf47305ef21e27bbfa970d7b1083af5a3c7159a0379d658d2

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ed0981e686bdc4ee86034113a750242fe1b405826bf4a553498bf558429188af
MD5 6086a459c52aff02cf71368792f126b9
BLAKE2b-256 4598c6e56bdd8c5c7ac4acce4f28a367bcfee4b42eca45d461c40637a038c445

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp313-cp313-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp313-cp313-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 2552147d0929db95ace291e460c652981721e0e437a074445fbafdcee8b6817c
MD5 1199e5e68286adcf83dea2db434c18b9
BLAKE2b-256 c6e8833c9f719ebb9f44435fb8ee45762f2553e50692b9a015768236a4f27c86

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a29ac34c7dd3ab51c2e7cc16c37baed13369a487d7f953ff4e3a8fff08642969
MD5 2320973eff68b0b783641e4922ffdead
BLAKE2b-256 5fd8f60f5ef7e499093bca325ed8ae28583e68a55dfb423ede86bce6c33398a8

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 e58b263d8e02c54396e7159d2d6668c9e6f2e7faa06c40026df205ff81b6188e
MD5 6aae1af8eff1a9f57e9fe31aaee2698f
BLAKE2b-256 7c1be7d6726d75a2222d3fecaa04e5d85aad954de65ddd6760959d09260b9208

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 be6273ae93a9076c28ccda39dacae98405af696c97bab02a8a78abd02fe3add4
MD5 2f4951b917dff2b317f3e2862268a7ec
BLAKE2b-256 d4c9673a63367892a5935a00e683eb4c35b3d379715361798858aea541b20105

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1ac35a551c8df8313695bff3e81dd8ef3d9041b0edc8827883ef8015819bc59c
MD5 e84b38da00ac95e0cc1f42e67958d9a4
BLAKE2b-256 fcd3b3d151e46fe81b124d12f5abe81e399d5851cdc8d6ffdeef57bc5367bef3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 80edbdf59d312772a4c5646807cb2a0b5f5a2c7f945df070aac1782a7790f432
MD5 3e1d04d27aa1224bc862d188ae12c048
BLAKE2b-256 52d9e4135a375cd01c0eff5a54d6808e1853e702aceb41c7a1e9a29188a0c8f4

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 70682b25b5ce835de54b6eb803a75e550a953e494fe348960ed8c534cb54ea50
MD5 a4afdd2ec2ea5f6d36f144b6cfdc1629
BLAKE2b-256 a83d8214379a1d9da13462b5d0f64ddaf148923c4730ad50a33b221510ab0ca1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ab9b40866d783cd410019b0380b0db815ac36ecf07be2be80a429e41d7caf98
MD5 5953604001013ee71ba74ff2aeb5f3b9
BLAKE2b-256 284c87296e4684502cd2899638326be516efaa70cc497c528610834dc2b525f1

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6dc952c45108351b3995b85e23d99c2251a5160e3ed3d9a7768300d8c97eca56
MD5 bbef27342fb5b09c347b866321bf8db7
BLAKE2b-256 a4a60f1db9ef4a5285a34a73ac411e74e7b9347d216472366a418359152b91c5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 655b5d3a90955dd4ee15e59d89f33b5eaae14e7122e9fecb93b4c03ef426ec97
MD5 738febbb32ac817f2129ae424cdd2362
BLAKE2b-256 f1c85aff13e7c85fe61c9eb3ee668f02bd405bc9c6e948d29ea2e569b388afbc

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 707d7a39755986605402dd308013e6a142b8a5105d51f863b17f4bc283f4ac85
MD5 73ff2dba7f6bb30de681dc223c6f266e
BLAKE2b-256 7479667ac97c47facccae28ded35aaac9212d7a0df594f6991585b4af7a6449e

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 455a368d35dc4444d4d8f442b5715e3b43310b60bb0f99837556830bd32defdf
MD5 703053495205bf135be0c3e803d741a7
BLAKE2b-256 1d7953a5389d7b2775d071c87ae25e8494814ae98418d0ce4ee8acf82472ebd3

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2f54f077904cc8541be03e16bee9bf37207c96e6bbd3c5b3d1b5fbd878e40580
MD5 be964bd7ded7a293c60381850cb9b680
BLAKE2b-256 84d81ca8770a1a782f7ff0b66f8bc7f93cbe3a1c68d226ed13b32fe007451491

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 08e0b0b7fb21ddd83801231f5f32b7e7ba4f7c9a7dee9034a1e36e6b6479143a
MD5 fe4cf9efe5c2c74860c5e2ce3ba3463f
BLAKE2b-256 c6f93829417bcfe79894fff173fdb21749cd9a9f3f2499c1df1b72b5f57ae270

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 a13398b5b6e025e710b3123c17db8dbc4db78c708916bb602211257fcd7f27c8
MD5 053902e021973e276403c0b039a820cf
BLAKE2b-256 eca9c64a7f7fa807518e0b5595397dc28c4db1100f843286fcb1dfc2f56d6c32

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5dccc94019fbca33bcc49d993641b7145c448255206480a38eee452869653b33
MD5 51f7bc8a95b226c323cfe76f981362e5
BLAKE2b-256 f64e1a467e500b49928d4ae51d00b70f00d65f93f3eee4145d57b4a70269efde

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc8346a55c4b3f4e4ed938243997e3223e0f00c93c48d52a86343943c0316a6c
MD5 01610c8923ff538eb99f2a7243c3c7d9
BLAKE2b-256 9a6a53de27a41d195ef9f3bba3930d22325a6e973bc7fdf8cec8c5c7c26c71a5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae672723577775aba560da34e376ffa4a038ff3e07c8513920b81903f8f9c4e8
MD5 51e92eedb3e3882fdb4cd3741f0477a1
BLAKE2b-256 f8559953d668ff816089acb2643049db7afe9721ac558124634220abdfd8bcd5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 854ec3d904001a74cda309038783a4538e1032ee5f2e683738c9b1159622e437
MD5 f0851b473b1e637da3e3a99b80c0924d
BLAKE2b-256 7bc89a61eb08aa30931db55bc86297573b4e763b9ef02ec281f0c6125dd07716

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 10ec391ed179cb613d7e4961a59fa9f0d6112e2753ceef1cd6bd03bc7c5cec24
MD5 1f1579bc5fae7bcd0bb758e392b5ab4e
BLAKE2b-256 2154a3aa0a5721b37cd67f488ff8f36132c956c9da5450f359cce321cfca080d

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 7c295323f8eecf7f70e570435964d28729190dc52412ba5a4068862ac20e7d9a
MD5 ff056a5efed829fdcd6302633d84d91d
BLAKE2b-256 15821e2eda7460822ef79029c56b49d464418848f728919001831e1ca7b8bc76

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1249f9aab62317c274d41d74c32883744d1b157f846961c97266c42a30ceaa29
MD5 c6f5f8ca93553379adf1d0f6c157fc3e
BLAKE2b-256 b70c72170476fa54edd4274b932c5a739a5636b4a9ea1c1bd56de4fb79a52d4f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 39b4ee51d16804bfa8674c0d07b785259d48f051def5f681f501bab5f110e304
MD5 f49770278fd197654f954a022970a51c
BLAKE2b-256 264a9d937a5bfc2bad5406807f401d2ba6257e690bbf7f12d007cfae4801315f

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d38deb0163c641021100a4cac5bef9ddc3949c51df8ce15b063850010ff64dff
MD5 74597db9a93f2dd607740a6bee6230ce
BLAKE2b-256 751424a3f4ee09fd5a3372a43fe0f1ca8f5f498010508554bebba33f1f793d19

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 18dd7ab3ffedae4b7f5668641da317a514284f50b2544d58c9b59d921bfb4c0a
MD5 b34a092c5809519606cda53150514f3b
BLAKE2b-256 f09f6b2fe5a519138f288a8d2852c320bc5813a7e8236f47ca7fb9303f3188f5

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 56b0adf6c2558624c3166a49b518e86059369153be15e62e113335db24438f82
MD5 e29b946d19a00aa3845114d07168c084
BLAKE2b-256 4eb572220fee7aae01ff8b257d3c5bb4dc2ac83cb831794a0be3af0c955cb4b0

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02e383dcc6174512851add8c5bd17987fb2bfa4dc94b3646158d0a6be2b95683
MD5 f7228297ccd12c321d04119a0ca43f61
BLAKE2b-256 9799b52c57cb55c2a805afaae2a6d36e224d0f6ea547f52f68d1dae569cc2775

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 90c27e2bef0cf3812984bde02925a1edda9e700650d903c7cdce1fc60946e373
MD5 8ccb8e957df295a327f28a09dcf20310
BLAKE2b-256 3cdbe9a925333792100437701856f95f5d74160c20d770803992436c4506ea7a

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 0e5f5ebe3742f2bb430d437f5f1b3539e0648e598af590c9f7d588e21d7297e1
MD5 15accf4611f3ddc193feba70cff41c73
BLAKE2b-256 13c8a3ff6a60f5931e66a639cdc8fece0a14754e5c20ce934ba3ed8146141f27

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp37-cp37m-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp37-cp37m-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 360e74b6970ec699dad934a951e82a1553926cb2f8a2aa772f582ba48a9ad4e1
MD5 ff18ceafd97a03ef5840a51710f2453b
BLAKE2b-256 7950a41b6375aa0a2c1e73736bba9f60185b80602357c22de536b0a7297fd97d

See more details on using hashes here.

File details

Details for the file confluent_kafka-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for confluent_kafka-2.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2effcccd28677f918ef879e7112cb15492004a50fd3ec92c330df5b420597283
MD5 20308f25ec244234169837edf83c65f9
BLAKE2b-256 af89e973ea83a5416cf00100e92d904806ce017333676d43794bede4a2ebaf09

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page