Skip to main content

Binwise approximate inference for XENON1T and XENONnT experiments.

Project description

Binwise approximations of the XENON1T likelihood and XENONnT projections for fast inference on arbitrary models.

Example XENON1T based inference

Installation

In the folder where you’ve downloaded this repository:

pip install -e .

Simple example:

from xe_likelihood import BinwiseInference, Spectrum

spectrum = Spectrum.from_wimp(mass=50)
inference = BinwiseInference.from_xenon1t_sr(spectrum=spectrum)
inference.plot_summary(show=True)

Will produce something like this:

Xenon1T Inference

Citation

If you use this package, please cite the following papers:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xe_likelihood-0.1.0.tar.gz (33.6 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

xe_likelihood-0.1.0-py3-none-any.whl (33.6 MB view details)

Uploaded Python 3

File details

Details for the file xe_likelihood-0.1.0.tar.gz.

File metadata

  • Download URL: xe_likelihood-0.1.0.tar.gz
  • Upload date:
  • Size: 33.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.15 Darwin/22.5.0

File hashes

Hashes for xe_likelihood-0.1.0.tar.gz
Algorithm Hash digest
SHA256 51b7bc9c1bd0376a8fce9863fe622bd8884068fbcb1339c2d03a20ff65de46dc
MD5 cc8cfd291af5e43a988e810337e4c7b6
BLAKE2b-256 89ed077922f9045c2e566e917e9861439ba48403a0e1caa0a7ac63ec2407f055

See more details on using hashes here.

File details

Details for the file xe_likelihood-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: xe_likelihood-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 33.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.5.1 CPython/3.8.15 Darwin/22.5.0

File hashes

Hashes for xe_likelihood-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 cf7ee5d236ea0dd08ce571bde9c703cd2c596a62223c75aa390f6371556eaaba
MD5 16f5c134e68dc1b289307918f9eac3f4
BLAKE2b-256 25bc99aa270ddeffe721b4aeec0cd59fd8750072f33f3ee6c1f1ec1b0700e40a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page