Skip to main content

Monitor code metrics for Python on your CI server

Project description

Travis-CI badge Coveralls badge PyPI latest version badge Download format Xenon license

Xenon is a monitoring tool based on Radon. It monitors your code’s complexity. Ideally, Xenon is run every time you commit code. Through command line options, you can set various thresholds for the complexity of your code. It will fail (i.e. it will exit with a non-zero exit code) when any of these requirements is not met.


With Pip:

$ pip install xenon

Or download the source and run the setup file (requires setuptools):

$ python install

Xenon is tested with all versions of Python from 2.7 to 3.6 as well as PyPy.


Typically you would use Xenon in two scenarios:

  1. As a git commit hook: to make sure that your code never exceeds some complexity values.

  2. On a continuous integration server: as a part of your build, to keep under control, as above, your code’s complexity. See Xenon’s .travis.yml file for an example usage.

The command line

Everything boils down to Xenon’s command line usage. To control which files are analyzed, you use the options -e, --exclude and -i, --ignore. Both accept a comma-separated list of glob patterns. The value usually needs quoting at the command line, to prevent the shell from expanding the pattern (in case there is only one). Every filename is matched against the exclude patterns. Every directory name is matched against the ignore patterns. If any of the patterns matches, Xenon won’t even descend into them.

The actual threshold values are defined through these options:

  • -a, --max-average: Threshold for the average complexity (across all the codebase).

  • -m, --max-modules: Threshold for modules complexity.

  • -b, --max-absolute: Absolute threshold for block complexity.

All of these options are inclusive.

An actual example

$ xenon --max-absolute B --max-modules A --max-average A

or, more succinctly:

$ xenon -b B -m A -a A

With these options Xenon will exit with a non-zero exit code if any of the following conditions is met:

  • At least one block has a rank higher than B (i.e. C, D, E or F).

  • At least one module has a rank higher than A.

  • The average complexity (among all of the analyzed blocks) is ranked with B or higher.

Other resources

For more information regarding cyclomatic complexity and static analysis in Python, please refer to Radon’s documentation, the project on which Xenon is based on:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xenon-0.9.1.tar.gz (9.2 kB view hashes)

Uploaded Source

Built Distribution

xenon-0.9.1-py2.py3-none-any.whl (8.5 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page