Skip to main content

Toolkit for making and processing X-ray fluoresence simulations via XMI-MSIM

Project description


XMIMSIM (the python package) is a package designed to run the xmimsim (the simulation software) with python.

## Installation

On mac, acquire XMIMSIM through [homebrew]( To install do **not** use the brewsci/science tap

brew tap tschoonj/tap
brew cask install tschoonj/tap/xmi-msim

Follow the instructions [here](


Install the python utility with

pip install xmimsim

## Getting started

The examples folder contains the following example:

import xmimsim as xmi

There is only one class currently in xmimsim, so one could just as easily use `from xmimsim import model`.

From there, the parameters can be defined as a dictionary:

parameters = {'n_photons_interval' : 1,'n_photons_line' : 100000,'n_interactions_trajectory' : 1,
'reference_layer' : 2,'d_sample_source' : 100,'area_detector' : 0.5,
'collimator_height' : 0,'collimator_diameter' : 0,'d_source_slit' : 100,
'slit_size_x' : 0.001,'slit_size_y' : 0.001,'detector_type' : 'SiLi',
'detector_live_time' : 1500,'detector_pulse_width' : 1e-05,'detector_nchannels' : 2048,
'detector_gain' : 0.0182138,'detector_zero' : 0,'detector_fano' : 0.12,'detector_noise' : 0.1}

to be injected into the code. The model is initialized with:

xm = xmi.model()

from there the model, `xm`, can be added to, e.g.:

energy = 13.5,
horizontal_intensity = '1e+012',
vertical_intensity = '1e+009',

All these classes return self, so one can actually do this all with one line, i.e.


The beampath layers are added:

xm.add_excitation_path_layer(atomic_numbers=[4], masses=[100], density=1.85, thickness=0.02)
xm.add_detector_path_layer(atomic_numbers=[4], masses=[100], density=1.85, thickness=0.0025)
xm.add_crystal_layer(atomic_numbers=[14], masses=[100], density=2.33, thickness=0.35)

Which behave like regular analyte layers:


Orientations are defined:


The filename is defined for this, although this is not strictly necessary:


And the calculation is run, discarding the massive xmso in favor of the csv file (default):

xm.calculate(M_lines=False, auger_cascade=True,radiative_cascade=False)

We can print out the number of photons from each of the following bands.


`xm.get_spectrum()` also returns a plottable spectrum from the xmi file.

## Contributing
Special thanks to the [vapory]( package, which some of the inspiration for this code comes from (also a python interface for a third-party utility).

NGeorgescu : [](

Github : [](

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for xmimsim, version 0.0.1
Filename, size File type Python version Upload date Hashes
Filename, size xmimsim-0.0.1.tar.gz (12.4 kB) File type Source Python version None Upload date Hashes View

Supported by

Pingdom Pingdom Monitoring Google Google Object Storage and Download Analytics Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page