Skip to main content

Toolkit for making and processing X-ray fluoresence simulations via XMI-MSIM

Project description

# XMIMSIM


XMIMSIM (the python package) is a package designed to run the xmimsim (the simulation software) with python.


## Installation

###MacOS
On mac, acquire XMIMSIM through [homebrew](http://brew.sh). To install do **not** use the brewsci/science tap

brew tap tschoonj/tap
brew cask install tschoonj/tap/xmi-msim

###Linux/Windows
Follow the instructions [here](https://github.com/tschoonj/xmimsim/wiki/Installation-instructions).


###Python

Install the python utility with

pip install xmimsim

## Getting started

The examples folder contains the following example:

import xmimsim as xmi

There is only one class currently in xmimsim, so one could just as easily use `from xmimsim import model`.

From there, the parameters can be defined as a dictionary:

parameters = {'n_photons_interval' : 1,'n_photons_line' : 100000,'n_interactions_trajectory' : 1,
'reference_layer' : 2,'d_sample_source' : 100,'area_detector' : 0.5,
'collimator_height' : 0,'collimator_diameter' : 0,'d_source_slit' : 100,
'slit_size_x' : 0.001,'slit_size_y' : 0.001,'detector_type' : 'SiLi',
'detector_live_time' : 1500,'detector_pulse_width' : 1e-05,'detector_nchannels' : 2048,
'detector_gain' : 0.0182138,'detector_zero' : 0,'detector_fano' : 0.12,'detector_noise' : 0.1}

to be injected into the code. The model is initialized with:

xm = xmi.model()

from there the model, `xm`, can be added to, e.g.:

xm.set_parameters(**parameters)
xm.add_source(
energy = 13.5,
horizontal_intensity = '1e+012',
vertical_intensity = '1e+009',
gaussian=0.14)

All these classes return self, so one can actually do this all with one line, i.e.

xm.set_parameters(**parameters).add_source(....)

The beampath layers are added:

xm.add_excitation_path_layer(atomic_numbers=[4], masses=[100], density=1.85, thickness=0.02)
xm.add_detector_path_layer(atomic_numbers=[4], masses=[100], density=1.85, thickness=0.0025)
xm.add_crystal_layer(atomic_numbers=[14], masses=[100], density=2.33, thickness=0.35)

Which behave like regular analyte layers:

xm.add_layer(symbols=['N','O','Ar'],masses=[70,29,1],density=.00122,thickness=3)
xm.add_layer(symbols=['As','Fe'],masses=[50,50],density=7.31,thickness=0.01)

Orientations are defined:

xm.sample_orientation(rthetaphi=[1,270+65,0])
xm.detector_orientation(rthetaphi=[1,135,0])
xm.detector_window(xyz=[0,5.6,0])

The filename is defined for this, although this is not strictly necessary:

xm.set_filename('xmsi_testfile')

And the calculation is run, discarding the massive xmso in favor of the csv file (default):

xm.calculate(M_lines=False, auger_cascade=True,radiative_cascade=False)

We can print out the number of photons from each of the following bands.

print(xm.count_photons(**{'k_a_Fe':[6.098,6.744],'k_b_Fe':[6.7801,7.340],'k_a_As':[10.196,10.890],'k_b_As':[11.472,11.999]}))

`xm.get_spectrum()` also returns a plottable spectrum from the xmi file.


## Contributing
Special thanks to the [vapory](https://github.com/Zulko/vapory) package, which some of the inspiration for this code comes from (also a python interface for a third-party utility).

NGeorgescu : [https://github.com/NGeorgescu](https://github.com/NGeorgescu)

Github : [https://github.com/NGeorgescu/xmimsim.git](https://github.com/NGeorgescu/xmimsim.git)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xmimsim-0.0.1.tar.gz (12.4 kB view details)

Uploaded Source

File details

Details for the file xmimsim-0.0.1.tar.gz.

File metadata

  • Download URL: xmimsim-0.0.1.tar.gz
  • Upload date:
  • Size: 12.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.0.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for xmimsim-0.0.1.tar.gz
Algorithm Hash digest
SHA256 1fe5ff220ea3ff9f82cb1596ac47a9d40ee31a712b3fac2a586f42fbe5224766
MD5 2c0d1700b0eea9e43bda98460761f003
BLAKE2b-256 7aab188345c41b6e07a4ba0b11122a791be540f7fa6704c5bd03e209f9badc8b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page