Skip to main content

Converts XML into JSON/Python dicts/arrays and vice-versa.

Project description

https://img.shields.io/travis/sanand0/xmljson.svg https://img.shields.io/pypi/v/xmljson.svg

xmljson converts XML into Python dictionary structures (trees, like in JSON) and vice-versa.

About

XML can be converted to a data structure (such as JSON) and back. For example:

<employees>
    <person>
        <name value="Alice"/>
    </person>
    <person>
        <name value="Bob"/>
    </person>
</employees>

can be converted into this data structure (which also a valid JSON object):

{ "employees": [
    { "person": {
        "name": {"@value": "Alice"}
    } },
    { "person": {
        "name": {"@value": "Alice"}
    } }
] }

This uses the BadgerFish convention that prefixes attributes with @. The conventions supported by this library are:

  • BadgerFish: Use "$" for text content, @ to prefix attributes
  • GData: Use "$t" for text content, attributes added as-is
  • Yahoo Use "content" for text content, attributes added as-is
  • Parker: Use tail nodes for text content, ignore attributes

Convert data to XML

To convert from a data structure to XML using the BadgerFish convention:

>>> from xmljson import badgerfish as bf
>>> bf.etree({'p': {'@id': 'main', '$': 'Hello', 'b': 'bold'}})

This returns an array of etree.Element structures. In this case, the result is identical to:

>>> from xml.etree.ElementTree import fromstring
>>> [fromstring('<p id="main">Hello<b>bold</b></p>')]

The result can be inserted into any existing root etree.Element:

>>> from xml.etree.ElementTree import Element, tostring
>>> result = bf.etree({'p': {'@id': 'main'}}, root=Element('root'))
>>> tostring(result)
'<root><p id="main"/></root>'

This includes lxml.html as well:

>>> from lxml.html import Element, tostring
>>> result = bf.etree({'p': {'@id': 'main'}}, root=Element('html'))
>>> tostring(result, doctype='<!DOCTYPE html>')
'<!DOCTYPE html>\n<html><p id="main"></p></html>'

For ease of use, strings are treated as node text. For example, both the following are the same:

>>> bf.etree({'p': {'$': 'paragraph text'}})
>>> bf.etree({'p': 'paragraph text'})

By default, non-string values are converted to strings using Python’s str, except for booleans – which are converted into true and false (lower case). Override this behaviour using xml_fromstring:

>>> tostring(bf.etree({'x': 1.23, 'y': True}, root=Element('root')))
'<root><y>true</y><x>1.23</x></root>'
>>> from xmljson import BadgerFish              # import the class
>>> bf_str = BadgerFish(xml_tostring=str)       # convert using str()
>>> tostring(bf_str.etree({'x': 1.23, 'y': True}, root=Element('root')))
'<root><y>True</y><x>1.23</x></root>'

Convert XML to data

To convert from XML to a data structure using the BadgerFish convention:

>>> bf.data(fromstring('<p id="main">Hello<b>bold</b></p>'))
{"p": {"$": "Hello", "@id": "main", "b": {"$": "bold"}}}

To convert this to JSON, use:

>>> from json import dumps
>>> dumps(bf.data(fromstring('<p id="main">Hello<b>bold</b></p>')))
'{"p": {"b": {"$": "bold"}, "@id": "main", "$": "Hello"}}'

To preserve the order of attributes and children, specify the dict_type as OrderedDict (or any other dictionary-like type) in the constructor:

>>> from collections import OrderedDict
>>> from xmljson import BadgerFish              # import the class
>>> bf = BadgerFish(dict_type=OrderedDict)      # pick dict class

By default, values are parsed into boolean, int or float where possible (except in the Yahoo method). Override this behaviour using xml_fromstring:

>>> dumps(bf.data(fromstring('<x>1</x>')))
'{"x": {"$": 1}}'
>>> bf_str = BadgerFish(xml_fromstring=False)   # Keep XML values as strings
>>> dumps(bf_str.data(fromstring('<x>1</x>')))
'{"x": {"$": "1"}}'
>>> bf_str = BadgerFish(xml_fromstring=repr)    # Custom string parser
'{"x": {"$": "\'1\'"}}'

Conventions

To use a different conversion method, replace BadgerFish with one of the other classes. Currently, these are supported:

>>> from xmljson import badgerfish      # == xmljson.BadgerFish()
>>> from xmljson import gdata           # == xmljson.GData()
>>> from xmljson import parker          # == xmljson.Parker()
>>> from xmljson import yahoo           # == xmljson.Yahoo()

Installation

This is a pure-Python package built for Python 2.6+ and Python 3.0+. To set up:

pip install xmljson

Roadmap

  • Test cases for Unicode
  • Support for namespaces and namespace prefixes

History

0.1.6 (18 Feb 2016)

  • Add xml_fromstring= and xml_tostring= parameters to constructor to customise string conversion from and to XML.

0.1.5 (23 Sep 2015)

  • Add the Yahoo XML to JSON conversion method.

0.1.4 (20 Sep 2015)

  • Fix GData.etree() conversion of attributes. (They were ignored. They should be added as-is.)

0.1.3 (20 Sep 2015)

  • Simplify {'p': {'$': 'text'}} to {'p': 'text'} in BadgerFish and GData conventions.
  • Add test cases for .etree() – mainly from the MDN JXON article.
  • dict_type/list_type do not need to inherit from dict/list

0.1.2 (18 Sep 2015)

  • Always use the dict_type class to create dictionaries (which defaults to OrderedDict to preserve order of keys)
  • Update documentation, test cases
  • Remove support for Python 2.6 (since we need collections.Counter)
  • Make the Travis CI build pass

0.1.1 (18 Sep 2015)

  • Convert true, false and numeric values from strings to Python types
  • xmljson.parker.data() is compliant with Parker convention (bugs resolved)

0.1.0 (15 Sep 2015)

  • Two-way conversions via BadgerFish, GData and Parker conventions.
  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for xmljson, version 0.1.7
Filename, size File type Python version Upload date Hashes
Filename, size xmljson-0.1.7-py2.py3-none-any.whl (10.0 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size xmljson-0.1.7.zip (28.5 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page