Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.4.2.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.4.2-cp311-cp311-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.4.2-cp311-cp311-macosx_10_9_universal2.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.4.2-cp310-cp310-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.4.2-cp310-cp310-macosx_10_9_universal2.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.4.2-cp39-cp39-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.4.2-cp39-cp39-win32.whl (3.3 MB view details)

Uploaded CPython 3.9 Windows x86

xorbits-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.4.2-cp39-cp39-macosx_10_9_universal2.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.4.2-cp38-cp38-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.4.2-cp38-cp38-win32.whl (3.3 MB view details)

Uploaded CPython 3.8 Windows x86

xorbits-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.4.2-cp38-cp38-macosx_10_9_universal2.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.4.2.tar.gz.

File metadata

  • Download URL: xorbits-0.4.2.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2.tar.gz
Algorithm Hash digest
SHA256 7eaf276ef9384e654550640ea56a0ea400034bc7c7c0ceca43f5737fc30242b1
MD5 ae2daeb72239477488c2ef19be6ad656
BLAKE2b-256 210cef89db99d8a549bcb8a37eeae4b07d5f1654c8a8efefc1de018b8f2e587a

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 40a089ed0ceba10c9cbd50d233ff7b75bec6560779385cd919ff50a6c113c8d1
MD5 5c6a7ee771ec2fcd283432cd98341f02
BLAKE2b-256 4c053f44163717a4372477cd0b484524719aa32dd06d122abe8616b457ba7fe5

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8a6655b9575f43ce7c3c76f4acfd0e3d137019fb6b0e2ad6d2bf47ef5d1c86b4
MD5 2ed6d5ff4baef847269646955a6764db
BLAKE2b-256 51d4510c45d0c0d4387a88b5189edb29d05c6501f7bb42c01b07766bb0756bec

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 de99c7010d80566f45f8ff2a2364ad5479e16537d50f8261b64c715d9fb81fcd
MD5 fa718d458eb8928012846433d44fb419
BLAKE2b-256 cb9be1867fdebfa79e8c23dd06e19b0f462102a33d776a31f94c5b358b33676a

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4a74dbffeb373e1dbeeae15e792bb664ecf383d565ae669f8177f530cf7fdb1
MD5 f61cd8c406b559c64245d28157b2a328
BLAKE2b-256 7ab893735e7c2484cc273d27939079260edc97057f2285a988c52f696c2d3627

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c7135bed737c248d197202b1e29e9b134a3620cd049f309fbb9c17398134face
MD5 5862d4133f49f336b8547f09f3bbefa2
BLAKE2b-256 d34cd87989c4cb57aaf6bd46bc0a9aac926cece91777304d4eb9a619effe88c7

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e81f634e07d9d5e136b5b8baf2422f3105cb2af15434b45f31123275924842a8
MD5 fce80727535ba099734ed339adf1a0aa
BLAKE2b-256 b2570caeb632e5ed7bcba80940d3b730a168a2ccbbb5443e7024ff5ce1f9f45f

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e402354e8b8de18a0a30632d68e0bd4556da829d451c6dc4f8cc104910aa286
MD5 44b9d642c17d235ce2a4620ff4f27c1a
BLAKE2b-256 14bd18d1292c873a25cdc0a9db28074dae64471e57f46ad28dc14b8a0ecf64d6

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8075210fd53b691816324a9c0f83bca869b55214d1cbfef704f6a53cbd14f23
MD5 4b1c0d34b9d4ff8714adb942a2709a36
BLAKE2b-256 b76e31caf3343a691458af302551233cbc0018fc846adbf56648500031596a5d

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1bc295736665512a1bb859c70f180d46a50df1168235da44d458fb5fa744b3be
MD5 df3042ff6452d1e45fd0ae7b5c350cd9
BLAKE2b-256 84f995ace5fe5b2d62212beb2bec614b2ac4be21bc92a08c6638b488eb6dd208

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0c53c0c6359c1992762aac74bfb9ab04b87eefe6b8a9684a79a1d2a69cf52d23
MD5 bc3e019939bcf0791fcfa3b6f0b0ba2d
BLAKE2b-256 d69f86bfcb609d74c5f23224f1e0c08b3645e637c23e934a7094327184734bde

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c81acfe1405528d5ad9be24c65b0765c4f16cfe5fd17d1bad74b38ebc42c00df
MD5 c13ee7885d6b08e65a997ac3c149953e
BLAKE2b-256 9642690d74ded31ac0a3fc019aef08483dbff9f8b2217622f003c8d49f499d32

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp39-cp39-win32.whl.

File metadata

  • Download URL: xorbits-0.4.2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 6fcd43ac0e57dfe244e93e1b62520371550518e1a4b86032505a0363d6963a92
MD5 9b040eaa1a551892df088555d09ec59f
BLAKE2b-256 5310f6ddd5083e5366179c9b4185e185ad3b9329290d4e972d4c55be3fa5fab9

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de3f48482ac5fcee46ff796fec09bbfd8b7a43b9c73c43bbb6dd87f47aa66e3c
MD5 bb00dffb35b452a5eeb5ee77a052c6b2
BLAKE2b-256 e5dd6ade2d965c3133d1f7be1c57f228c5d8c60be3c3038f9ff4f53d20fd5788

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 57993174da243a90b9eaa4a45dad3a289266e00150f3ffb761d9f49169fbdd67
MD5 8f9a8e1fa986cc5edc63596706494873
BLAKE2b-256 9c0671ff52a1d75893ed5639e6054bcb92f3955c4f5737961b7321bac647dbe8

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1925e221ed25a22082aced4c4403a5a55849b3d6b64d816ebaf5fafd69a53da6
MD5 7fc661ca4c2de771f3531be7c21d35e0
BLAKE2b-256 d84f4ad55f153a8a462e6122667aae9682474fb43dcf36c090a4b2beb63b1a4d

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 08b5145035cae06115d14680b9dd93bae5888198b9cf17ad46194d924a8e07dc
MD5 26d0684cdfadc2b36c3998eee352f1e1
BLAKE2b-256 349dba761967cb3c9ea32df68d0389969ba61ee8842c15410a664ce7a849a690

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 118ab6f9081cab7d653ce6f5edd9ccc0072a2405ae85ebd79b3bc05c13b47d8b
MD5 d36e51e342694d594e2d256f37840c1e
BLAKE2b-256 5c45135a619e4be8186ff43d3ae75ea27599cbbb73479d9e3a26ddfeef5978b8

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp38-cp38-win32.whl.

File metadata

  • Download URL: xorbits-0.4.2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e1cb6bbb957a6dcbf4ea3ee8c918677390228fbfec8a2202c70b456fa0db9fec
MD5 727e826331a699564a18aaebefa582af
BLAKE2b-256 028a970add30cc9108e92dd7f8f66a6949c8cc35eea35efb3c7ab3558a919027

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5596f96e34613d8642808747a0761cb3a6ee4760b18d0bd3af58e32c7b053b49
MD5 7407d2034ffb1a92ab69e84812a297d4
BLAKE2b-256 b652b122eab7c7d6a659b36138d37311369c36f2e47d5912731217d43c4ab83b

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9d97694abf67a5da9c9a2272750e4117600910b59c8075d4c96b2ee3e42e2dfc
MD5 0c8d13e4c854e56f5afabf0087b8112c
BLAKE2b-256 a69284310a9485bfe3e8ae52a5a34c4d193e753a47a6078ce8ce0760c987f6b7

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 250f22590a5ec4134e6e50e2b53d690dc664dc20dc2cf9c243748a106dab46cf
MD5 8d3a5670ae092a6c8b590d73d6f13972
BLAKE2b-256 ac23b6e778164ae2fd00156f48b673c2e9eab030f868f8e1ec80bbe04c863e53

See more details on using hashes here.

File details

Details for the file xorbits-0.4.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 20b1ce9fedb684c15eb542233ee6c5143df8a7e9cdb79b06e31f0523e23597e6
MD5 dd9398e9b617ee62d026150793954a2b
BLAKE2b-256 af8812f56e74566d86b9d0188b9bf506ea185234aa677e1c35cee804d0241273

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page