Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.4.3.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.4.3-cp311-cp311-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.4.3-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.4.3-cp311-cp311-macosx_10_9_universal2.whl (4.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.4.3-cp310-cp310-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.4.3-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.4.3-cp310-cp310-macosx_10_9_universal2.whl (4.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.4.3-cp39-cp39-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.4.3-cp39-cp39-win32.whl (3.4 MB view details)

Uploaded CPython 3.9 Windows x86

xorbits-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.4.3-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.4.3-cp39-cp39-macosx_10_9_universal2.whl (4.5 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.4.3-cp38-cp38-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.4.3-cp38-cp38-win32.whl (3.4 MB view details)

Uploaded CPython 3.8 Windows x86

xorbits-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.4.3-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.4.3-cp38-cp38-macosx_10_9_universal2.whl (4.5 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.4.3.tar.gz.

File metadata

  • Download URL: xorbits-0.4.3.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3.tar.gz
Algorithm Hash digest
SHA256 012f4e2387a83c745d989ac0dac6b696fc26f99917aec853dc8845d4dda7285c
MD5 b2f7302980b2c659360a7aad022d6c7a
BLAKE2b-256 69c985885a96cf1e4864b56271065e0d981f161f1f25c14788b421d5955db18c

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 428a915a25568b79ee92566dde45850efa213f8febf16a881bcea99478e5745e
MD5 7b32450f177a5e8585e3319cb8537ddb
BLAKE2b-256 56796ed5a3739383837074ab3e0c55a0a5921d33c8be8b73b25c9d057b4cd09b

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e7799032eb574faffd8adef7251da1fb2cd3cfd06e752c244dc52904e9e92ae3
MD5 940dec1715ad5392ed5b6187a5902e87
BLAKE2b-256 4a8c2523149c2a7a8c73e04c64783baf94495c088dd52e1a600a9032b70c859f

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 69e834ff1796852608965566a74f3cfa6c281a4f1ff126696fd94224b1d456b5
MD5 6d3490cb9fa12c1b69cbf4b0c0d7764b
BLAKE2b-256 e53300926b73e6678784465e6af71a24e4a6ae0d85a931172e392944d12ea2dd

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6cba2d3248b6849e44df9645602aaac680888f3772e80c609cd3d28fa104d002
MD5 ebc8328aed630e5488bd7f2c4f5d0277
BLAKE2b-256 b586dd9cf5256e5305554eede53c9a38f36561ce42aff7089827aa9317f9b098

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ddafc3aca4eda32ed23f69faa91b58b1113799cbbc481c0d4cffe37bc15c3b65
MD5 b5f2bffe30ed3253d73dbe67875e9690
BLAKE2b-256 03bb542d9207ca3949308e571a0d726613b3a48513c4fe1b1524946073e06b75

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6ac58ecac45b1b61d3bc672caaa17491708a98b2d66358ab42cd89e932d40b3a
MD5 d5c4a5aa328a5d9ccd31c573876ffa46
BLAKE2b-256 7a987b7b5b557758bcc05234c5a47803522b4328552f5a9bb4c438b345f0b022

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6c9ac95bc1ab772e4ff3ac23cbdc0809996d2ce4524ebba6be6f591947ec6803
MD5 e37cc32d470117ca09d0237ba5986a1c
BLAKE2b-256 b2eecaff9aff6ee1873788acae83a0647f6f5beac18c0468c5715d9984ff283e

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b500c2679ff07c33167f6e1de3fad2289b06f7b7bf9ea285c529edcf399f3cd
MD5 ece251866ed4d28604afe9b078f80668
BLAKE2b-256 05facf87ba0df621bc7b0eb98d9dbcbdf5ea84b777b2d7d3a037011bb6a94d1c

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 802da4ba52369e23a4930d79f192850672da871fd75cbc3f02067eee179768e1
MD5 d6ee1282d22ebce24f01a5c8d0b6d30d
BLAKE2b-256 95e3328d9147884478a3ecd2a28e1476db3be614f31d18a5187e31858adb30c6

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 fca00ac9cbbe276cd41de98ed00859b239a208b47b86dbe49e05ee4c43a286d8
MD5 495e2a830f2d0183851fa7434136fdc5
BLAKE2b-256 48659e33ffbfeecebe2788a5561b24fead8189d22425aa9ff5ac0d6489434c31

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 530df92b546fcf50358582c1be11b1b8bb7fcd9a8723d6656d153f3556f732f0
MD5 456422a05b51ce3f78c2478902c6e354
BLAKE2b-256 e492b8ebde79aee6749a086db2dfe4cb6f4ca45702fde50e429f52f69c12a46d

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: xorbits-0.4.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9e89ad9b604831bcd560aabbdd53a2ed8cea73a182efa49f90819b9438f24aa2
MD5 593809704af4a565af76188a125e0ded
BLAKE2b-256 accda50c223703e01f05b95a848c62865a41d70f52deb99014f540f0f16bd01b

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c62e5a1af93baaa10a9748dc2b55798981e0f7bd0e1579068ade4efb84b3bb0c
MD5 8c01217c5907e773ca046a70681fa986
BLAKE2b-256 1fa3793dc11af9ee158e3a80a659e4a369cdc13dbe8f69cce00db30f5b6ce577

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1b91ceddebcedcb9474a9bd32836a30158262a972ef51882fd817caeedcaf0d0
MD5 23bd80042752d9253418cf9466c8bea0
BLAKE2b-256 25d34747a85bd798da20683f6a9222dd77344ab6b1eccfa15187eee1e2c1bfcc

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5207814e9713e07d7dd1435ce141f1b22804323394ff545f66eb337bd6aa8623
MD5 252d74294f1bf0fbf7171ea9ddcd0c7c
BLAKE2b-256 ffaef452ab3fd807023a55d37a2d51498e37a0c79c9dddcda80826cf7c48697c

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3af3334c0e189920d7c2d80ebd4e43fcb45517274ec080f2af864cd3b8b2ccb2
MD5 a2c0a1eef0fc214f495e517136a0d8b6
BLAKE2b-256 7184f91c52479bd4485eb83745abd7ac4d456177e6147063de88f0c678871750

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.4.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4b3cb358f84eb81496c725d0f05449aceb08541285bca9a53418eca1ff39214e
MD5 7331a0349f87d358da12194e86fe8731
BLAKE2b-256 73cebb60ae36164fd56a12a3b179a834a3db01163a894a8a88b441121688b7df

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: xorbits-0.4.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.4.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8b87a2cd5ebfb406274ace80cf4d4f963cc4a572fea967e3de06f24c50d45fb3
MD5 b2a9a230e28e158cced9e23034158b22
BLAKE2b-256 9c1066c1024b007c24fa70af0ebc5f47a2c64c54d4dfcd9a739ceba6724f412c

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 73be8ff1d9b95dbfda163ae3229ed26cc982c2e2c66ab3431ff82fcdf7c4c729
MD5 07e0053c477a84f68d146d8fe02e1b70
BLAKE2b-256 97b317313c8ff84283776fe0a078f23e19aa04cf3f31f38ef523eb0f0f825986

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c215a03aaeccb381a69aec8e8beb361bf633890e5eb83f06518f844bab0eec4
MD5 a4ebf5dcbbf53f9b059ed4a876b9fa35
BLAKE2b-256 685e99976464bff2d1f20b96eb1f3f03da0a03706f138d5e893fa099f07e2e3e

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 10621566a10f4c9bb3ab9c9d8ed5b861ee76e8161f6553bdbba2309bd1cac47f
MD5 fc98a4217a03dba4e2203d3735570318
BLAKE2b-256 d80d4a568017e493ac9e09e94e7df2b68ba70f11ba476238fed27fb025c5a589

See more details on using hashes here.

File details

Details for the file xorbits-0.4.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.4.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e97a6550d41ee00893c332fc197163167ea3bc438d1927b9f2ad4d012f58c203
MD5 5a3de4323f123eda9e421871a2c600ec
BLAKE2b-256 63cbf71e37a5d0349f1fe2997a502e7466fb927a7ff2d35d3fe9b9807a05e0a4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page