Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.5.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.5.0-cp311-cp311-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.5.0-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.5.0-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.5.0-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.5.0-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.5.0-cp39-cp39-win32.whl (3.4 MB view details)

Uploaded CPython 3.9 Windows x86

xorbits-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.5.0-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.5.0-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.5.0-cp38-cp38-win32.whl (3.4 MB view details)

Uploaded CPython 3.8 Windows x86

xorbits-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.5.0-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.5.0.tar.gz.

File metadata

  • Download URL: xorbits-0.5.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0.tar.gz
Algorithm Hash digest
SHA256 e1a083db0baac2304ad9698ed9b04f6ffc38d2aa2fc1a61ae5f839590f4a7d98
MD5 843afcefa1ea05a56fcfd546c529b5f5
BLAKE2b-256 e11ea0520921ab0cc3d2755b2ff56f8c53b0149a26dc3169cecc793464745f91

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d6d38880073e825cbf664d59f3064593fe3c97fa60da518edaf19c0a26c699b1
MD5 966ed88b0b661a286f70ac9c28082b66
BLAKE2b-256 4e1ae9c13759212adbdf3e0a1906d488e8e0b1ac66338ad5e53d1e6d070e1e5d

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b20f9cb09cdb56441b244431dea94186f47404bbd49805d898d4ea050cb54dee
MD5 741b6f88f281377f7bdb2e3b0b48c982
BLAKE2b-256 39a9e5a2bcd7726c006a96b0759b1b083ed7b0d3a7c9995e36265c6c30557577

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7bf24e6f2f943d0bfde135eddca7a715ec5b1931de5f5e3b065f7b3f4d73eb4b
MD5 d57ea1cd3b9db75825c221cf9f30d991
BLAKE2b-256 012be216d20ea7dbba92bc9e59da5ee0eecd81aa72a794bd14b48096a8edb92e

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e67616a4161ac81b9083ba071db42a2e956e2b1f6b8a901936e357fabe69f15
MD5 7797813dac10ee0cd3fe2d23a5ae5fca
BLAKE2b-256 c0f01478653924999da3e47690387ef70593611f5c1b66c2611b4e26314ee38c

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 69488125c6c7da392608602effde941b0a7e2c33096f10053d4f21d19e864312
MD5 7052b24f4d4bc56d96ede3ff81236d0e
BLAKE2b-256 32d396fec868e562d9d6d26f2f5e52bacd82d9b30f9b44943504f0ab21ca326b

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 611e429e04a975fb7a9db5f1b2a01c84e0ee2e5e7ee1f7f673029948062f8e82
MD5 da43cfa21203742ab0c8ecd189aa3d0a
BLAKE2b-256 2eb012bdb6ea7a6861bf6ad77b72b9491c4bf10b0f0bb6c6e68e3e99965e3ccc

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd59d632ef2a4433269251f824be83285439cef3a0b9de251cbc6613c695df06
MD5 cbacd692f6ca4ad519d139559df20e10
BLAKE2b-256 e31fd48c9b80f7eb776bc9932964aa2f7fe2dabd0231e6d61a270233ae16d723

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 172276ff9048e24fb4f34590219632b3628fe64cd8c3250640a0a66a317de620
MD5 df2776e8c4a906987b4b7c43f675823c
BLAKE2b-256 6e38870865bc245aa07bd8dba5fce1edad397ece3d35044029282f605e30d416

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e8f14b5fe74b20160e55739bf16d6d24b7fc158ff00d96870a8b3a8cc343db55
MD5 a6a479469d43794bcb46731896fdff89
BLAKE2b-256 9ba716f8351c893a4ab53a57ed2363bcd1776792c4ad474b03e893a7b5f90e2e

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0d551cbe9d55de7d8d41e49832fcf30799eac98446bb802cdf41c40a60cb727b
MD5 514cb92ebfde0ef2629b808fb8e6526c
BLAKE2b-256 7e766eaed6652b925941f22fc0472d12378c7052344d023a28fd007ac8db9a74

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 74b0cbd6abafb3f0fcf66b4c642e86d7cba026dbe129037163f3eedabd7bccb5
MD5 e7bdff6a758865580780415949ddbb04
BLAKE2b-256 8ff67cc30858ccb055fa09836c4cba45834cd7c22cae2fd4d9d4ca5bdc2da890

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: xorbits-0.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 36d5d90a5f99f732f54b8cc0edafdf7ee6684851493397fde1d1ef628cc18c3e
MD5 5c7b856974a4e1696ad6417dc5926f4c
BLAKE2b-256 e7f3673953d6a38c9d317a36f21ba2957e0f7bdf134c3bf326d9112e00f7ba1f

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2733a5859b529978b5c0c114c83ea48e804b1750740bfd00b5f9f6799341d2bd
MD5 1a2f25d10a366f6ba4bbddc0152ab473
BLAKE2b-256 9d7c0c3b53eaff154ec1a0018d9d5a81d3dac27c43c3dcf93d0b4584d2b29cbe

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7e16093f6bf5d7738566fb4e95a23a61cf6ca4dd0990ea6081665a8ef93afdf9
MD5 b351c3eda2dd4926ba259deccb859a97
BLAKE2b-256 4f9e623dfe9be924133fa01d64237db8ad772834f23c70957b3568de20230df3

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2b70a53c73dda6bbf3ec36bde2a4e4fa207265f285cc0272b95b2d67413e8e00
MD5 c33162a829bbdf06dad04743eff60748
BLAKE2b-256 63cedf981eb356d16d21f110e777c8088ee62f10198bc029b5e6116e18a95c69

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e61d1256fba9bb1b9ae98684db19d708a1edf8070711a1ff962d38eff13b6991
MD5 c568b5a42cfa821fc0caf64ff947ab89
BLAKE2b-256 22da22cb4170309949cdb8f37db0a052d3d0c083c6c50aa0c780e34c76dcb627

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 14fd3f679efd9d795a63527577f5739a79135aba42257aad2a2212356acfef88
MD5 667c37eeffb5637ba9b8f283768885ab
BLAKE2b-256 dbc15b270369c161be9cb23dfbe570035211e408bef0e43f6ce56a5cf75dc7bd

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: xorbits-0.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for xorbits-0.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 0b8284a4495a8635a6f5adcec0b3d109b7dacef7362e9dfd352ba1428c3b5523
MD5 496043cbef49936ebc95337244033ff2
BLAKE2b-256 ba429500efecbdf226eb1ae842170816b9e48956b02f7625cc8cf8189954a203

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 285937c0dce0832edb49ba877f83081ef7b84abf56238a009a3bc11eeb615a16
MD5 204adf467437c013e2d3000f2384e43a
BLAKE2b-256 42762bf4a2a79c3ec62828d860665ce0da0345e53bbe0a9edc26c73aa796247d

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c2022b5a7047d465e000bc5f2be614da221a64feb3679c84b091b9cfc761929b
MD5 b8a3312dd0712d5b6e2b177238cc9936
BLAKE2b-256 f8ff39f778ec3262a738c341a3f67d7b6f1387597dbb8da043ff3c3cbb86c723

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4e6f0ad0afba253bb61943aa48fd3dce2799c8253617504003e61ccc18801657
MD5 eedeacb6c967845156479856f84fd2e5
BLAKE2b-256 e276d6bb1ba0f570dfb9de54c97e62881d09f4672dda5e555c31d95661d116d6

See more details on using hashes here.

File details

Details for the file xorbits-0.5.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ce677748786f48b86ab06fc2680ab917bebaa75b5d6c5178139cbdbe09fce0bb
MD5 5ac80ae41b5190ebd31be2ceb7515d81
BLAKE2b-256 071432c6e51ae9a754b2a0e37893fb785dd0307f6162cebcf421681cc38635eb

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page