Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.5.2.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.5.2-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.5.2-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.5.2-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.5.2-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.5.2-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.5.2-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.5.2-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.5.2-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.5.2.tar.gz.

File metadata

  • Download URL: xorbits-0.5.2.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.5.2.tar.gz
Algorithm Hash digest
SHA256 02696f0bbeed05cb2ba0f2174e12aa1e7e5e66d1a33e3d7b5dc766957eae9b4e
MD5 663b118c37cf529feb07a0b1820a6ad4
BLAKE2b-256 da463459c1dde8ada68ae9bf7b045a68fab0df78cc557d957104859f4899fdf5

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 02d7e860d9068976cddf433541a425d1c9ce45c59a00409b986fbafeba071b28
MD5 b8fc99d3cecf941e1ed3880d9cf9e824
BLAKE2b-256 64f7f43677998f47a7a01f10e6cdd3d28e2a10d5d14da960f3dd5b6a0cff46b8

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2f70650f324af9172cb3be32868b9b76a15f00a811a96edd3e99e5eefdcfb3a2
MD5 0412a0891a5f7aed353eb1a644b8947f
BLAKE2b-256 f0cfa2b2196e764b51fd7b180bd7e5cd7258c21a49b1c1bd7aed353445619760

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 414fd15a7c47121450cbc2d67440be262e8cea98cfd2128e37c021a8c4907ce8
MD5 093b45235f5432c6bf22c843a83e01d4
BLAKE2b-256 1b0498d983fe50b1750f40dc220c427b5e90882385a9d92fa5a299b2e82e7087

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f7d7e9ec53ef673f690322eff5d437f7461a67216d856cae7253b34a99bc43bf
MD5 3c00bf3ee4853eb7b2c921b4a56a0128
BLAKE2b-256 f0db9b4f7921ba770b59da35e3ef8d084b379fdbef467ce640b65a41c748fc15

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c7f29ca2b05da9918bc6106a5423b716b6d83353423b2245ba7b3d0053c70bee
MD5 fc80b55e7a4cd6f413201d447eb72b55
BLAKE2b-256 86fa706a103dd61a04884f1997164558a0e0b79c5d68a2672471abdade2d0ad2

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d3e519b65afa2fa8587c624a948b031f7c880bce761e5c30b2f4e27ffd5da30c
MD5 87f32bddbceaadc0146a2981acdf4511
BLAKE2b-256 44071867305ca0f96925404c2069987cfa5f15f09783e60520cc8161cf10e18b

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d47af8ca14bfdc391c2b8d31fbbfc2afa2b9f314903df6deecdb9d5ffe04fa9c
MD5 5b37cf429959dad5809df4967e96957e
BLAKE2b-256 82aabf89aafe19a76abf4e337001c2a32e6f10686a16861f1157a52641f789c5

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ad2d3459c6490e8739cb283321fa6ab913606b6172ae261b85541eee1ac00b93
MD5 c45d65d8f35eca5fd2bb46e45a403adf
BLAKE2b-256 bcaf4c111740a0037e94b50ced44704f11e4d9f01930800bd0154052ded6cec2

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0b4d6fe76c47395e7ef7136175b5bbfcde7fe018e1bce4a6fe0cee36843a5605
MD5 0261614bea63171db7e0d26eda022bf1
BLAKE2b-256 059e9bb64339d1846c6b0dc331fde73434bd284f33bf6dcb2976bfb49dcca78c

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a5460716823b3c058c526ad04a20eccac63be0c8fd4c9666639d6c1c71728bb6
MD5 5a66b6d8865e05ba8ef4e50fc03b1cf5
BLAKE2b-256 e5ff9d22d92d8ed0e6f1898866df1ed2c10fe3ebd60f6c2c9066991101b2411a

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f6c9b274efe0f08f03e655d5505581a8c065acea01f3f4516f16913054acf62d
MD5 070488fd6f3227af6c723f22de61ef7e
BLAKE2b-256 dbea012a462b52db21f517b7006d8064b061efd26d107382cbb1771001e623f7

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 372cb531ba5b6763fc9f4878def84851d71692a855dc4d90e9f304d8382e4411
MD5 0836b294c9a44181bab72fc7cc43523c
BLAKE2b-256 21b62cc3bf0eaf1174b12132bdb7b721de16448eb1380ac49cad0c3da50a1bd6

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c098566a1ff3d5584ab5387f347c50747c872fa87b25a02209a10d85b9918218
MD5 dd71a68074793b00875251afe4e223d0
BLAKE2b-256 84fc09c93db7d325d2f4c6e3c13ec768dd0a65e8925eddc85803f3a7c376c0fb

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 248fd990cf99dc8e75d527a10705315a18f3c7a050e83a38cbf4bf3a9d5b180b
MD5 1738188542c23981d0cd964564e5ea9d
BLAKE2b-256 32e2316538cd47911e3b592381c9680f526b81c1e00c4705822a4ed2e4fccfb7

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 abdae71168f611c14cd71ccfee836b88d86ce93f830ea9993eb23930da394cc0
MD5 ce6f2a329f87277ade79dc044b08b251
BLAKE2b-256 1eee08b2493d5771eb9e2ced78f4b332220e7c4ef16e848353e9df8415746aff

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8ad8b1d7ee9fa9b05d1e4532a5fba556504cf9b71612dd37dca999e12f637dd3
MD5 c243171a8a35474d8984d55364fe58a2
BLAKE2b-256 f0d81b88ffe825291811017ce6e428263f637a6c662db55aa784b1e7363a095f

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e8aa4f5b24d84bbd6614b131972dbef7052b3686c36618f649a4ec7f9719aac
MD5 8687f6236ec3bb08d4f66dd812a06972
BLAKE2b-256 2e4b8d00a82248f33a7415ebae70d2a9e53b4ab79be410d9393dc010e166bf40

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f5836d766bb62287428132deb6fd56a7bee379a8ed05fcda72ae626461a14472
MD5 f294000a8311d61f31c64b75d5c588a1
BLAKE2b-256 47f66bfdb4bc7d4d79f483dc824a9276378fb8514a27310f948157c85b2834ca

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad167d681db2c23729f4dbfab0fb5eded01e3491d3cbc4eb65059230c769436e
MD5 27937daed99771b98889ae5bc30dd83d
BLAKE2b-256 0eb9bc2f9f7edf718d78ba53d9310a5bbfb22092f4032031d60e804a4154d14f

See more details on using hashes here.

File details

Details for the file xorbits-0.5.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.5.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d8da936b56cd16b1551cc85d90701961d8d0ec15bd470969f82a26d2f1b42882
MD5 6b57927b5ee211de2e4d395aa3307c48
BLAKE2b-256 8dbc0878718cb3fe8d0e53441b3ad527f6b801c34b1a66c7ff007e1d82c49e65

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page