Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.6.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.6.0-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.6.0-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.0-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.6.0-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.0-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.6.0-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.0-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.6.0-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.6.0.tar.gz.

File metadata

  • Download URL: xorbits-0.6.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.0.tar.gz
Algorithm Hash digest
SHA256 cbfba5100bfbf6979a4cc92cbd33d9b29668318092f42394f3c3ae5f2f8ae4a5
MD5 5867a4ba2b224edb086f81501f677cf6
BLAKE2b-256 873cef094752958c8e777a1902cb3828205bbdbffa03316bfac6c028e4ebe2f5

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 088ca10dba84ac2e7ac665f02a69c10e586dc8e0a43df8ac09b79c993b3a799d
MD5 600c4e9a51312864f201e4f89134609a
BLAKE2b-256 8b1485388eeb9ab0197a9e4b2e5169ddb06a9889c2e2555d9d2319b5ab131a07

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99ee1e0fbdc9c6a688e0e0c63d63f4d60757bf7710a98867efaa124b5d7a18a3
MD5 d791a6e82030ff0d945a39bb1c1b9d88
BLAKE2b-256 f2b4c388141882e189c96179ec14a5ae1ec1ed27a3617d5574658a8f1a21b8dd

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 719cb00f71c2b82488d60ef4f794cc2ad8af76c29afb7642555096932ee99b56
MD5 f2630f3accd53062a34b082f70364ce4
BLAKE2b-256 04fa2bdee83cd4251b3d0ebd5d93121a9594cb58f2a0f657c6a8a4d18d01265e

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fb1c7104ba0a853d68bc3e4fa61b7d94d086bfa146863c8755fcec1acea3ab3b
MD5 7b75e67f4c44169d22dd5086f837fbc3
BLAKE2b-256 ea5bcd70d198f7abd86be4fb652f81630fe93caab6765049e5fa01050b42881b

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d2d94b545e3c6dc8cf74f3256104059e2e7572772dfcab0ca28d5282a1c493ec
MD5 c7ee4092c009641726af69589dbc45d1
BLAKE2b-256 b61cda4f92d247208c3718618cfc29311e0492279cd138259a074f575a7836e5

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 705e1565aaaef55c5899ded58161e752ab11545ce73c90d4fc98092dd54fb909
MD5 27a9f5aed2ebad1321eae9bae191ca84
BLAKE2b-256 26e665e1a84545864cd2e03618026aec7f72af0a7dc6c8a82d69d04b65fba2e7

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1be16375e523b674f04ce7305db3f6d7c7ada243161411c85d65832eb889a8ac
MD5 4aecb06b7bb55f8a07d74feff5173a2e
BLAKE2b-256 a69661b488f0581d4c0340eeef9df4b63264e1a220d1af86209a67dbc4bf7e1c

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5a42217f0e4afbb606b05d7f7683a1916e64d5a92a9d66ba461d4ed6643ae32
MD5 06df3859e52e8d22d44613dd913a823c
BLAKE2b-256 d8b496568ddfa6e5a5e0b9dded6da4e12eeb4a6ef0548eee6334216cbad8fb19

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34c3bd36926d062a3d41286e2fa0ae2b365bae0a31006ad85c5bf3b68a5e6b50
MD5 42926183bc3a1bb4ad79077f31cd4410
BLAKE2b-256 c6f45703027f48ad4cb2b2eeb9a81f52aed57097e421f1354b302464dcad1869

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8c0c0fc2ecb137f0295b2a6b72c85a8afa683f39b7366d54f2609f915310750f
MD5 b3ea9e58e0a9d5793387f2c8882c4a1e
BLAKE2b-256 e15f68958d311f4b96070ca5b7b621db32fc1135616267af294357968f10d18f

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 5106e0ebd301253321b9793a7f132e2771a8457fd14ff4f64a0d5ca18c0ace1f
MD5 5a4f665347e0ab55fbbeca0b54213566
BLAKE2b-256 a5a3f1b3c41b3b17689dd7aeecdde6a83ecaadb26f9941bf6a8298650e012663

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33cc08dd56081eed2a75b832e43e3b101270444981e44d6728e4b1cefb8fca85
MD5 eb9a3d605bf17655bb7ad2ef8ce1345a
BLAKE2b-256 35aeb698119da134f261d84db45915bb28859927c867acd39debb3d37a7992aa

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ca7de00d413797bdf1a754b2f899f137e95e1b79b4e3defc2941fbd10a7c4924
MD5 9f52e0db6d445a963e79ec00adc775b5
BLAKE2b-256 51d3c9572f050ed2cd324b7ae9efefb25b8e9e43c8a7340ea3d29cba1005b1dc

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 852e51487d46984b32506a6e1acf708958a80d54703614f308edba671e2b35ec
MD5 afa885d1a1f334ac8d8719d4d26fb223
BLAKE2b-256 134cc0e0e1656f98b96bbf18ca24d5c2201f9be878156b1336523e9b8dd633f4

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b80b8712e43839c4f9aa27732894c4eefd82f25e62575858eab3e2c051824e26
MD5 92f96ee7c221388de80cea4bab110e6c
BLAKE2b-256 9be1579308c4e4d4fa05bb1569fb071189e12ddb3639c2962c4ba872acfbf003

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 936cc7d8a3469a26fd3d5088e9784ac837fd29eef5c23dd6d25573379627966a
MD5 1f64162540df2d01be3bfdde6b60cc0f
BLAKE2b-256 0ffa3523243c6d111ba9f133f9479aba4fab992ba1630cec8296ded58b63b271

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98f8cd872f4146125cd42f4994959699b190a11924ca93a15b1fe32e0ad847c0
MD5 7ed530bafcb14843a9a8cb7ced22246c
BLAKE2b-256 361d0c8238bf8c38ff72fd8d488f516ae9a59715941bc286483407e87fd09c82

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 720c6efaa4ffba43501592a4a0ab0ececa305c831ba9bbb9b362ef44e413b05e
MD5 0e7d85a6bfee9e3f9dad7935b19130e0
BLAKE2b-256 7c8c09d096202b4034c62f12ea28662290d3ecc3a60750a5f90c7864a220b1fa

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 253e3d9668e20d9efb3ab8433cd4824c07fcad9113ef31aa0635748bd683aef0
MD5 241555d7cda8b771b8d02dc8d27cc761
BLAKE2b-256 dfc3d4334ade497bcaac1972c0c6e4224eb9e2d7d97c3ee8128916732ab94616

See more details on using hashes here.

File details

Details for the file xorbits-0.6.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4df29e6d1bd2ad83f57d206f9c62ac7f63301bacb8bc000b3b4c4744fcc2733f
MD5 448a74d608408beefaf1880547e3624b
BLAKE2b-256 11250cf19c26bf9df51d40637fd3c4047fbbc814682726e5aa08b8ca475df399

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page