Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.6.1.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.6.1-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.6.1-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.1-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.6.1-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.1-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.6.1-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.1-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.6.1-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.6.1.tar.gz.

File metadata

  • Download URL: xorbits-0.6.1.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.1.tar.gz
Algorithm Hash digest
SHA256 51142f2fa2200e23e7036d201284c1b1a058d512a21186cad522fdd6167a4790
MD5 0662d49f32571c05861179df9a031c5a
BLAKE2b-256 3b7cbd0d48a7b178a9269bea90b925438d212d7ca848e2e4e0e9fefd8b25b66e

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4a22678db87e455d4947ddecf2277e96e4a43f49a0e6597403420ba83374e2b9
MD5 894ca17d6b3254b669ce8722e2691239
BLAKE2b-256 ed8fea6c08fadde5597565451184a880aca9f2e6d3dcf3acf64e492ecb7c4022

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 591bfbe043e4b9f261e1395a957479ae00a81fdb040a1c61f1f6af29a9cd1224
MD5 4aa37277d77bf1754f4c4693334a0243
BLAKE2b-256 ede2d181fd19682b4265e1a83a2e5ce1c3765aa1a8a78f92f0d3f8512cd2f057

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b3c9b753ad5101c967075921ede0a5af326611b094a10cec02c6df1cbb8d427
MD5 a75df8f76ef238dac820cdd3e18e4e84
BLAKE2b-256 5e468ec511b9f30ac4af2c28b1a56f7a939777ff3bc68e58e6dbbe8a84d5d09d

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 250672dac61356a084351cb2605dc695f855743417a57ff5de290a92516f6f81
MD5 a325d4fff4d8b059b24522dc0b950525
BLAKE2b-256 956b8642ca5f7a3377b2df4a66964d07d301743e8c63126a4a4e38e3a853b978

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a42eda966c29c249d3a586874d10d41ea9143f3d92d5590c18ddd0e50fd02faa
MD5 15cc30ed0aba24329f33aa65f7343c19
BLAKE2b-256 808b282fd04781e3247229681efc81f438ed5d3671f78d8812efee66df9033d0

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f068123a327f75a364d6941a91728f653215978d1333080012b76b25a7229564
MD5 fc27a5769b9328d9f199a73dde2fefbd
BLAKE2b-256 4124ead6d8341f2ba64559cba89f3bc06fe25b88a2d5688d47a061654d59f922

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c357ba3ea700f267089a83f9965f8b0706fa8076b3948c2a702e87c3af82f25
MD5 91224b1a07578e38ec8fbf68ec5b5e42
BLAKE2b-256 7953e269d197af7738fea8f7743763622bd7c1a2dda026b0814b052b1f16c06e

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ab98833dc926aab200b9d04ca283ea03bf111aa1cb1363df19113bb18a67d645
MD5 97c64be15540f85c1342c39fff0761c6
BLAKE2b-256 5fff36ee6e03a138a53a3ce41a1e612ac4e2994247ba2d65676ccf6447b433a9

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c047555b959965eac9dd6a00a972d8da8af9bd728ea196c40c2d7a71e6a01514
MD5 399337f2936fb74ccf5cd8a7d9d5a9c3
BLAKE2b-256 7d88a8fd98280920ccf177733344f3687c34ff847b60558b6b531f15ee29e5b4

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 532eef9b8642aaa3c27c5590ebdd2169aeff72b7c6ed7d89d55e4f39611e917b
MD5 06e1ba1a7ce2b26eeed855f670a422cb
BLAKE2b-256 c9ba79ce8b1af874fbb26d7c95fb84625a7f6bd4a72e644c900548ef35904ccd

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c09ae92aae66463763f2778352de4d547823fc9e6f9fb2faae2c20f650e784a9
MD5 1f8dbe3498dd00f74070e380ca27f478
BLAKE2b-256 859403e56fab532ed36959535e19d92384a8571d850c1e8206af6328714124f8

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b43aa5d3f764be5120b3424d1c703dea61706aacbf025e14659315e7dd4b7563
MD5 09e12bed60477b94a407100c756db8ec
BLAKE2b-256 4a1325a4ff2a20925fc142c43ce2ab6c2474de8315242a5b74529a7dc50a78e7

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d101a6d6526a3b4a05c516ec5deaa03422cbfbd787ba10612629ad3b8842523e
MD5 2c40e312cf87ee99f4148730b931530f
BLAKE2b-256 2772430862d09c45c385abfb98c3c4822b91ff2d747927d6cf01a808c49e34c4

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 371719692fd5f5b40c850622b31d15b65cd14cd9aee7cb975df61593a5f607c6
MD5 b18cd64f227e5365ad5517daf8406ae9
BLAKE2b-256 b17fa5336592cc53404e200fa037ab8c8760e6f558a9d10f2bc2863cf9db1ecc

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 79d3be013d3d5990197b4d1ec5dc73b6a575b9f22d2ee4cc9deca65c362d0d76
MD5 39606b53a75374f7034dbeb800d8093b
BLAKE2b-256 48e6b21e8aa22efca30e1fbcee2d81ba118c8114021eef33df11ebd3b9219584

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2542c02577d4071c8174fc027ef75beb11ca4b031021bd89e93a9edafe0ef01e
MD5 0ed7b6375f8a4f9c39441c99c29cbad4
BLAKE2b-256 9385e4cec8f124eb58227306c0a324cdfd222987766f1dbc40c2b70ea674c944

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71cf644e51fd02f08c4221b3ec210646983ab0000c567d93644edbe2e4131b86
MD5 183da4e6a8fb59482e7fc770f6a67895
BLAKE2b-256 79e48fbe82ad436fbc7ee99a49b8a486277cc5c1311b3685d2f96109d01e6691

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e6f7a099e7037e9448ac7f4353bd27c389a67870290031d5a1069d7efad7ab02
MD5 19cd7dcbcf34534c5d3b36c75a77bcc7
BLAKE2b-256 1a154f1b5287988bb9cb6289589934d0c3eca7ec3f958cdf27328730c7f02301

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 700634b699064ccd84a29ce6188c6d44e772d8b792fcb10b24ccf8686e761497
MD5 3ca29ac1a3432d1f1ca1949d39b054e2
BLAKE2b-256 03a4cef8a69f734a926db3ec57ca77aec415ebb6e685eaa09dfefa60da27d14c

See more details on using hashes here.

File details

Details for the file xorbits-0.6.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4ddbb0ad637c10a445b59fbd8bcc8b103b3244e40b77eba3edfa1f657246b427
MD5 d57faab44186a4f78c4d51cd570b67db
BLAKE2b-256 2ba4a9f63174b0bbc4c3656800d3fb37dca731f645bd21d4008e3495a0e1d4f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page