Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.6.2.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.6.2-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.6.2-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.2-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.6.2-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.2-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.6.2-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.2-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.6.2-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.6.2.tar.gz.

File metadata

  • Download URL: xorbits-0.6.2.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.2.tar.gz
Algorithm Hash digest
SHA256 bd27d498ad10556ad1161e5aff2866857d8031552247ad742c40d80eeefe3fb6
MD5 dbd79b2de457ee54fc070833c5f99a5f
BLAKE2b-256 fea9e047735fec22a11d22afd1a2a88bcd72566ca4427cf36928efea97cc4940

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ae11b292c8f2863b38f135c96baa10b84af7b60677c51d606144855026e7225f
MD5 441fca6845c6a89cbedec744ce8eb368
BLAKE2b-256 e9844f32e4e0d41ecf781fa3866c6511782d002eccc5e47a5a7daf37e5835798

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e89ef5c22e3c845e0bd3800a9bf5a1fa9123220a863067ffa193ee13b418dbe
MD5 716d3bc2e045e57bd883464c03e63b68
BLAKE2b-256 be5cf88397ef0431682c14d5d9dd4ff3debb59deccd5910c956f6a8c349e7371

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 efe682d5d5c2fba52c909f133bce751e47b4d3110cb5aeeabc04b667c52db4b4
MD5 2733b75b5f422f16b12026975d2d09c6
BLAKE2b-256 7c9c9219616f7b03bc00e240ae1448a7c03584f4c015f9af56a2fa5e7a2e9a60

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2cf5831cc84df73fda386fe85fa75c59223a5911096ba72ea5537986931037a8
MD5 f9f9a22b5147dc9f6a0e1da71fd32fcb
BLAKE2b-256 12e79263855e400611a03260b67cb4da3f2b158cd54865c611a969e411ba25df

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 85188675c42208c78cac04528f0cf7fc087b592cd65ccd536013948254188866
MD5 07a94d47bd01d242962fb5213e356a72
BLAKE2b-256 362b0351be61831fe5d67dc3961f6b02479bc1d864a701a0412fbfd8dde39452

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 694f948d4944319e8dc4f77a6d255f60774445d60ea254d10414bbfb14cef8fb
MD5 04539ae343d3e95cd00417ae972a3437
BLAKE2b-256 17fe6897d8648a220112b69136c0932d69e2a994be81dd20de5a370c3fbe30a7

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3ec0fe173be435f2ca78d969fdef83baa3f85b12de37ae7f795889f64a957f63
MD5 3c1414d331b45508e3b6536f08bff2c5
BLAKE2b-256 7aad2863c2423a34d5d67b39dd36b1468346d74c386a0d1c6fd36b20036b6c64

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe447ab549c6620a2b8bbc343d82e2e366d3315b706331534a3260e2c581fcce
MD5 509b75de2318334718c326053baccc66
BLAKE2b-256 7ddb4b4eb2c88bef1cf923a4a89c24f1f86134d6a5863fb51ee68d515eb2488d

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e9b5912b496a9668963d99bf76cc8f77c3daa5dd06b52386a26c99f7719fb4b0
MD5 0413675d7a90342d497336e21aea62a0
BLAKE2b-256 6f5f2d8b7b01271f82331d792e165dc2a5e16e71c15116cba611da8f50b0c211

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9527a2b734a4ec24aa53f2028f3a168228fde1140086acc0c8b7a078523a28d6
MD5 bed90d7d740fd9deb50836d9caaffa25
BLAKE2b-256 0fbc44880252d873f7581626916deabbe71e9a8a0cd918624670f4bf86047561

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e18a6e45b821abceff24fdd03e50c5299636a1ad975d1009544cb23659728f38
MD5 b157d22c9e8e17ccac725c0a7cc35a5f
BLAKE2b-256 32386fc66cd7bf0b1f2d0176c06f88346300807a0a113d8f010a2093aba27ced

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e59ffeb6f476ba1862bcfdb0b386b40e4c89f33300accef4bb0e6f807c255ce0
MD5 39824e484f206416bdf5ab153df3f31c
BLAKE2b-256 0a83e2943e01b997b26f79f912b55c09509493cd19dca7f51b4aab0a1312cdd4

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 67be1db777cb7546bb9b87f801be3a29532ab7472932de26496cb659a78305f0
MD5 6497238bb5f52188ae36508fb618cd44
BLAKE2b-256 bbe148bdfb1c2fdd20b4cce10c2db04b8c1c7bd4a9a24a99999d496ffb464025

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a150449a71af72b7039710dc59be1bc9fb93cbf85919d800063dec32f024244c
MD5 cb15436e7f88a488d0c4af9f21fb125a
BLAKE2b-256 c052625e55ee17fa4d5b6692a0cb7118843315a76bc56b1f313b08c44eb7a11c

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c069e0738e185da3cf2cc449a73b05d70e07a7b79f9d802e8c70285311ccbf9c
MD5 6e852450e6c7504eb57a062a4c6d0464
BLAKE2b-256 4d4b57ced661182e9ee14095f8a369667a42bf6db6dd0d1e1d90b34d649c9f7f

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 15a75ec7c91061a2e7357848709df2371d1e370aa1857822bd70243e724b454a
MD5 daa514c5b3510b473e1666c6c651a7d2
BLAKE2b-256 0be6fb81a4f4ddf38a9f99b2b07fe9548643d1cfccb3be5b4afbfefa853a6c89

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8dc1f97536b9354bf8f13edf9509c4ebe6f2a21c6fd920c9fd2226640947414d
MD5 56fce62cd2d2ceca3a13defa366e44fe
BLAKE2b-256 a6e2c8083dd6dcca64398cc911f819665828672219787aff7aa1e018cbd2fb4f

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d1b467956874db39a930ed0e1952e70313c835935edfaf71b84723640510923b
MD5 c95d23936bd5151fdd788f4cd2687161
BLAKE2b-256 0ba7057f8945b9b0a0424f4889ed8f2370138afce44d3703b86ae2a5af46ab28

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 adff77aacc0f6140a990eb4853a48b56b8375c5ae7c9339844c54822a10222af
MD5 c6f6eb0cdcffa5f394396411bc12bd0f
BLAKE2b-256 0035a45a1c12be3c77b452aecc0550eac7d634d3cc62117165220ae6d3ca0a9a

See more details on using hashes here.

File details

Details for the file xorbits-0.6.2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 36c1a8c8c54b8d7cbfedfb3c2d670b2fad3aadeca36876f2de66c03d67caaed8
MD5 92f7f1f3b36396a537534d1b1b834536
BLAKE2b-256 905e751e4d3ca8d92608e536766cd3bf7f80c171dc13e9b28d882f6e7c87d744

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page