Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.6.3.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.6.3-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.6.3-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.6.3-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.3-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.6.3-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.6.3-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.3-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.6.3-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.6.3-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.6.3-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.6.3-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.6.3-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.6.3.tar.gz.

File metadata

  • Download URL: xorbits-0.6.3.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.3.tar.gz
Algorithm Hash digest
SHA256 fcd4589eab65c5496655e434cbdd468e15c743d3fd1abe31c25b27c9f886aa65
MD5 1cd499d8ab2a1ae164346ce828725e00
BLAKE2b-256 a526d851c21c8b72797669bd09de8e2bb8aa46ecbd6aff33654660ab6fe555c8

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c95ede8e8805b8163ff8573fb8a10d9aa317011479abc7c03bc96455c878fe1a
MD5 84c927d4b82afe5be4a1124dad15520c
BLAKE2b-256 912ac583ce92eda5806004e9de1da9e91c91ce18e6b9fe7e3d7e4802fdcb68c6

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96545a7f1194d94980e14519ccca3de82bf75107274a0448233e3ac189d50a23
MD5 4ffa4e80e6bb570142c06b02bbe0f29d
BLAKE2b-256 bdf9313d00c9f66f4dff89919981d44e8a51718264a30190880c8c76bab3b37f

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bed83fb7253261f26caa82055492ca017752b0c2985ef844a36b96e58b7f9047
MD5 d34f631815a46d5672d3c9818e3237ca
BLAKE2b-256 b6eac73cae5b12bce02e7b89f8ce3cb9e875c302ecfaf733d9880904d74ea6be

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a3fc447a3aabe9ce35d9be4ec4b50dfb0ecbe0268993de6f704c512c5f26d2f4
MD5 f816a0f459f68e44e33eea03c664e06c
BLAKE2b-256 4dc9e5fe964da4d5ca6b76129825256817a9430c425471ac210784065bad8960

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 55d826210e7cbf8c0f497cef22616c975ef4881cccf0fe0560c0f56f47ff333b
MD5 1f282ec5be85cd03c7391836776ace33
BLAKE2b-256 05de029cff4833651d7865af0ec2320f66d06b8465098b509088d75dcb4ffec6

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 24c0570ffdaae45e5aa1197eebe2840148d7430b79111214ae7be6bc31415148
MD5 0ffe7abe3a87b68b75cd8fce2e8779ee
BLAKE2b-256 00505d91f488c74434483f770ea5cab8daec525f05ad289ba2eef2da81f99648

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6360bdcc92a898300efa0b19c2d8650785970c490fc266912fc9ce84bdb500e9
MD5 21adf7f0dce72b1a508f80a33e95debe
BLAKE2b-256 c2ca5eecf7587e8314b9b9a25c7a391d6a5b21bbb22b4e72be5b2aaca7c74824

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 435ccaf79a7482a9ee70943e7e86c3933c6c5b612795a45faf5a087101bcca72
MD5 1973c0f9ca09e17ac495dc40b99757a3
BLAKE2b-256 613b0b6c47f7881053cfc22a79a245aa2a03aab62cc522ff038aa4ce9cf52080

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4593c882aa37c764295a319afa3cb1339e45d097c3436aaaed49baaf89cf58f8
MD5 e9681914ea582959ca9682657d68736d
BLAKE2b-256 92a8d974b5acc607e7906e62707b7b4e18092425711c9b98e60ee413fff493cc

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 24efab7393747673ec8e5a9f88f09c0c7d65029829511ab74ac9423c871da0cd
MD5 d2211e8c005752ff194a537c5d328270
BLAKE2b-256 286b274b0d443e4e8601c8a247433d316beb1f1b3657f3794368669f4b51e7f0

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 baf7a1a4ea946579671c78933003b90f74413b7a8301381c7ca4d673d435581b
MD5 3c50c9e5ec8996c4d261767bfc21f5c5
BLAKE2b-256 6404f5dc5e2163856aab5bafaecdbc48bcd7e5271c2f266c61feaea1e8de2ef0

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4fe9a2a3325f581f244624450116564929301bcfaffee8d80347e66e628bdbc
MD5 f2a62903060473cedf119d1d4e61b1c1
BLAKE2b-256 ef8a1db8a16e3eee99fa7d6527334da5b2fff5fb20572726d77787b60433cc88

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 277487991ae414c1affb6705a1fe204045a48a40c82247166ab30302cb5d7e78
MD5 c452cf4adace6d70f149e97e5fa3ecc9
BLAKE2b-256 619289a9456cbc1f3546070dc3121500fba7e5f66c4e871079f9b828d9a716a0

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 691988498fe91b809e25f7c22e36952c63847e26381ff7d27eaa984b4afc9857
MD5 368501607b1da86e37453412cce42936
BLAKE2b-256 150f9b6f54f66f6c9a3c38f0a4893229d86dda75ecfdc42131d53b42346d3d33

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 46480932e9f68b80b367f6a281ce6cb21d854d369317885054fcf685cb4a246c
MD5 4f4068582615b872795d044b724a504a
BLAKE2b-256 3bb00c70d1ed0bdc65ab01a7cf2e5d80a6356acfda808889ca79b9d65aaece5c

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.6.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for xorbits-0.6.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0710c92854cb03f65cfdd9cf434ec20feb48e68bc53dd322e2f4ee69b178c484
MD5 849548a7da7b8ddde1e864cead55a4e8
BLAKE2b-256 53a573d926245c2d86e462d5582bd526746c7e9622c480e05d50fb118a297c9e

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3f8dcc09269cd5197841eda9102f530391fb3adf01b612d3cdf82e499b5c2839
MD5 9a1ecd17af972795df678202d5d85ecc
BLAKE2b-256 6d6d0e358c1f1802804d995069461950257ac4789409348c0cf5004e99a31e2d

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dd4b628ea34489207fc56c13a6f29713b93bb263e31a2aca735438696cf2a9df
MD5 35473e28250d0227ee889a249f54f1bb
BLAKE2b-256 4eeaaf669d1b48968287fb5a0b3351cd294cda46f0858f4987e3a87effe9f898

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 accdf0412e50b3faf7d0304a478019db54a1652ba46d280fae4c9c7aa2b7ba23
MD5 8ac891529a338257daaa3b6a9e288915
BLAKE2b-256 0739f5be6951ea42f8e39c0c41953b093148de21a11bba4f89934fe079dbb80f

See more details on using hashes here.

File details

Details for the file xorbits-0.6.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.6.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 31748168b7dc4e171051d37a67145b42f3441c9d8908d776bdbc32d4470e5063
MD5 d1d78147e9a7cade67398de792e9cf6d
BLAKE2b-256 edd7711f7aa59a806273adc4ff1724ecd448085f15e6e3bdbc5e884e98f23abf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page