Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.7.0.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.7.0-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.7.0-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.7.0-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.7.0-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.7.0-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.7.0-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.7.0-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.7.0-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.7.0.tar.gz.

File metadata

  • Download URL: xorbits-0.7.0.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.0.tar.gz
Algorithm Hash digest
SHA256 64529ef8aa4334a8f978a935d79fe1887602c4836ae3df8cda4aa27da624a8b9
MD5 f9bb2ab1bf55ca7c42332d748d9003c3
BLAKE2b-256 936461274d8befd5330cea24d6d66f6f94686ccbc091df46a88b5fe95e0903a3

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e3da05efe7a13d729d176539367b8e389a3c342b33aca5e2f5fe98723d4f6c99
MD5 3507d0312958f64832eb54477c23254f
BLAKE2b-256 9b161c3ba8eb35c783419e5771d499d013dab9eb0fea0704ee9442e8d6450316

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdd1f1f209f2ef83dd8eace7daae45230a146911bbdfb07f104eaf8b515447f5
MD5 2ee30b8e9f3dcb064907fa4a39b84f73
BLAKE2b-256 750ac72fe9d9c30f49c3f35fca95db232a8d2bc84258bc7cffc09cf0ee92c43e

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7390b2d8b3618325801d8c37151ca7a7a267a3c8f534002e07d5bbedf1129170
MD5 da43824ff429a859a04fe61602a4fade
BLAKE2b-256 fe50c36e0989764afb605702105b388759cd493a7ae575702723b9113afee21f

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e5e11f58fb0f667016ffef20ffa627a5e1b64dfeae0a03369f65bb8b32d3a851
MD5 334d13b9a0ad012e46b29b4a7642c8b7
BLAKE2b-256 7a083b044a035ec9ef0cfd9db5eae5b10eae1bd99627425b8dd2743951052d39

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 2d48c9280cf0fd394c66636bffd5325f36c2c3054ec940207db8a81b6c3ae437
MD5 2ebfedc84d088ea8a40962970635355f
BLAKE2b-256 7929aa31f5c29fd42d4e1817f27c62c9f2efa0bdcf47ea7b942ea92921fca590

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 50fd2664f6e221f2007976525cbc8a01c49f6b7001652c94ea656fa988da5e9c
MD5 fafcd3c49f106b9b12fd78908611acc3
BLAKE2b-256 745e71062b2410b231d819ee27deffe329bf3ab7085bc08e3f6a338d6ebf35ec

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b1d6642cf7627780bb531418ec6dd7d55b02dc9cf266831f774c4c7bcd0876d
MD5 f2f52c80ae5baf1589fc45f4fb97e012
BLAKE2b-256 776dac9cb3e14f5279320f4b15fc5751dd7f0799b3fe663b3e41efbf7d4fe752

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 412fe931313441205bfe8290652ad7271c81a8f52b4afaa0202abbd502cc9ab0
MD5 0e930a952ac75e34483c09e31fc3f4e6
BLAKE2b-256 8fbf76ca96c60e580a782b0f4372b937136ea8c3c6340b0aa5481762d51fab49

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe348820d3ade6b8adcb159e98ddb1a1624107c5e7d5a00d437ff07599148ebe
MD5 97143b483fe222ac56154ad858045388
BLAKE2b-256 af39fd25a374a0bd72b1fedfbbbddbb4e43438231a4659984a112ea808ab4a9a

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 c01995176f031584c930e44da2428f870691cbc2a89dbc83086a1b86d4c902cc
MD5 d3597643e51dcb2cdffb5acbb7f842bc
BLAKE2b-256 5a714a48002fcde19b7ea78eea8010e93ea9b6ad1f466f13f7d8128d601759a3

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8eb9584b4b1b1b775aa68571b36157524c73b062f0be48a11c68a6528a99c7e4
MD5 48266976c164622c0b409285c5753a74
BLAKE2b-256 f90a622c9d006bcbcf3b613713704e82916bd8abe94f0afa4786586b218f8008

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a80960915ccc5c3a74d40050cc61a2728cc173d384e062804f242631ed18b7dd
MD5 7be860710c87b4d107f739377b9ead49
BLAKE2b-256 15d799ed833d69d67ff19933f9a83b589051b7c62a0b1ee8a0026b4854f527be

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c662778cb6768bbb9bcea342a89975398b3688a5342bb65f133a369a5835c8c9
MD5 1ac66b6b7acd6eaf61be28247e6f9ebb
BLAKE2b-256 15c0b236c533ca8f0f9e727e61cec12a5d3d4c307f131e7fb19d3652a421ecb4

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9580ececdb41dbce4b3435bacf61d8ae9d8a5693f845e2f0eebea0abb995bb9
MD5 f973856d9c2c2ea795f47b2aa8aec195
BLAKE2b-256 fceb87247cf42e93733d07d9ad8edede5072a184f5fed35958aa9ac3fd4a8b2e

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a8f76e1ca72c3925bd6bb414085a78a256a2630f63d39a9fce82c018e9314bb5
MD5 bc5e2f4f863e03303cb3d8c25cf70328
BLAKE2b-256 9758f70d0bc413a1564b0cfc8e10d09e7cd56306903fab362b3d0ed0b2f666ca

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 60c9579900efbf821925aff0b3644203639ccb61195f853c5b59e45687b4d334
MD5 2dcea43fae62d7112f1c376b2aeb5f1d
BLAKE2b-256 047620b82a461dfcadaa1ca964686c014b1a01a9dcb0678678cee7c72b698131

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e638b2ca893ab27bf551d7d1a320cef48002d37b0092f811d84615c1c6c7413
MD5 5bd5a87c0012d57eaf887e1fad0e6191
BLAKE2b-256 7a2e6e54299b92ac75149ba557cb1525fa648f479decd31d9609167d7538edc6

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a5c723a43cd963de15dea244003451170b897d048421c33481b9348289ebc0c2
MD5 09a36469db292320512d8db75da0a39a
BLAKE2b-256 02da67aab7105d768eed3040feb4a631ef3f1b320d329c610b389bcbde0af976

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 20c6c2ece79fb4df5073d88b3f3d11f350334374ed9734cc2fccd2d1069dbf64
MD5 87bc22728c8d32e616ca93709bd63ba8
BLAKE2b-256 0aa921c48d521f1f6b1a0bf0e59f283a72466746fca4782ab2f955c3969f4dd1

See more details on using hashes here.

File details

Details for the file xorbits-0.7.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 42be470ebf7abf160c59cccd17d73db06215644ae3f21f28a2b082879a6e7da5
MD5 021b2efb08979b334fa6a7148b10748c
BLAKE2b-256 c3dbd079c8efcf1c697129cf04da00c494bee6861b5fdf9aa1450ef31fbbff7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page