Skip to main content

Scalable Python data science, in an API compatible & lightning fast way.

Project description


PyPI Latest Release License Coverage Build Status Doc Slack Twitter

What is Xorbits?

Xorbits is an open-source computing framework that makes it easy to scale data science and machine learning workloads — from data preprocessing to tuning, training, and model serving. Xorbits can leverage multi-cores or GPUs to accelerate computation on a single machine or scale out up to thousands of machines to support processing terabytes of data and training or serving large models.

Xorbits provides a suite of best-in-class libraries for data scientists and machine learning practitioners. Xorbits provides the capability to scale tasks without the necessity for extensive knowledge of infrastructure.

Xorbits features a familiar Python API that supports a variety of libraries, including pandas, NumPy, PyTorch, XGBoost, etc. With a simple modification of just one line of code, your pandas workflow can be seamlessly scaled using Xorbits:


Why Xorbits?

As ML and AI workloads continue to grow in complexity, the computational demands soar high. Even though single-node development environments like your laptop provide convenience, but they fall short when it comes to accommodating these scaling demands.

Seamlessly scale your workflow from laptop to cluster

To use Xorbits, you do not need to specify how to distribute the data or even know how many cores your system has. You can keep using your existing notebooks and still enjoy a significant speed boost from Xorbits, even on your laptop.

Process large datasets that pandas can't

Xorbits can leverage all of your computational cores. It is especially beneficial for handling larger datasets, where pandas may slow down or run out of memory.

Lightning-fast speed

According to our benchmark tests, Xorbits surpasses other popular pandas API frameworks in speed and scalability. See our performance comparison and explanation.

Leverage the Python ecosystem with native integrations

Xorbits aims to take full advantage of the entire ML ecosystem, offering native integration with pandas and other libraries.

Where to get it?

The source code is currently hosted on GitHub at: https://github.com/xorbitsai/xorbits

Binary installers for the latest released version are available at the Python Package Index (PyPI).

# PyPI
pip install xorbits

Other resources

License

Apache 2

Roadmaps

The main goals we want to achieve in the future include the following:

  • Transitioning from pandas native to arrow native for data storage
    will reduce the memory cost substantially and is more friendly for compute engine.
  • Introducing native engines that leverage technologies like vectorization and codegen to accelerate computations.
  • Scale as many libraries and algorithms as possible!

More detailed roadmaps will be revealed soon. Stay tuned!

Relationship with Mars

The creators of Xorbits are mainly those of Mars, and we currently built Xorbits on Mars to reduce duplicated work, but the vision of Xorbits suggests that it's not appropriate to put everything on Mars. Instead, we need a new project to support the roadmaps better. In the future, we will replace some core internal components with other upcoming ones we will propose. Stay tuned!

Getting involved

Platform Purpose
Discourse Forum Asking usage questions and discussing development.
Github Issues Reporting bugs and filing feature requests.
Slack Collaborating with other Xorbits users.
StackOverflow Asking questions about how to use Xorbits.
Twitter Staying up-to-date on new features.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xorbits-0.7.1.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

xorbits-0.7.1-cp311-cp311-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

xorbits-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xorbits-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xorbits-0.7.1-cp311-cp311-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xorbits-0.7.1-cp311-cp311-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.7.1-cp310-cp310-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

xorbits-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xorbits-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xorbits-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xorbits-0.7.1-cp310-cp310-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.7.1-cp39-cp39-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

xorbits-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xorbits-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xorbits-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xorbits-0.7.1-cp39-cp39-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

xorbits-0.7.1-cp38-cp38-win_amd64.whl (3.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

xorbits-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xorbits-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (8.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xorbits-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xorbits-0.7.1-cp38-cp38-macosx_10_9_universal2.whl (4.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file xorbits-0.7.1.tar.gz.

File metadata

  • Download URL: xorbits-0.7.1.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.1.tar.gz
Algorithm Hash digest
SHA256 3eae1af90913f6477dba0bc27f96ef204c1803151652ed73c44130340bb2a26d
MD5 e2a2b5024d2099e397c152a11dc32306
BLAKE2b-256 30fd30345d6b0891fe46ed9322a93de4bc1b5945c73bf965c048f45abfa34b36

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 912d6351db4f6df812c3e850cac8250fdc76529b5af48baebd74071244c447a4
MD5 91535c4d555ce8ca7249efb995d82c01
BLAKE2b-256 62621ec05cee0ea78c11826e91172f243bc4b1668c5d34dddd54ec5d2767c5d9

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 69e0c103e0aee3b0eb4b4425a41b995a586a1c61ec4a07f57966f4f3f2541f9f
MD5 c50208c49ce954e3bb86068d9c319929
BLAKE2b-256 635266928e90a251b778f6c24c6a57988b57385b5d238e37b234625f1a5eb271

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7599f8ef3267c45f0c6e3423d2d4465952a9117d2961f498e66c19f877d62076
MD5 26689d16ccac6769810e7c42d2d5523c
BLAKE2b-256 57901f052265dab1f6da0422d7ceb0c075398b02628210fa3dbc619acf8f3c7c

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2547a79ab5ccb5c0a9e2700e83dc473cf4b15c30171d0280a9611f5ac9414d4e
MD5 dcaa2ec0c22d832c3c1c477e437a9a67
BLAKE2b-256 fb898b788ffa88b1841fe9531150f81a0bfa38d75f89dce676bd035066d8d253

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 3650735ffafe3b5d6e0afd47271acd82e74a7b2b70f9c0c7af3704ca4853cdc2
MD5 10bf515e1c53d70d0ba1c80fb82cd853
BLAKE2b-256 57908467e07fd1723cb821e27f360848421329e47b2f9c4d23e3f2d10c3b71fe

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c38cb055be4eb1d2921e7692d053ab5a340c0b7c0ca35029bd73bd48410e7dcd
MD5 407a7b9c15138c3af98e813336682ec6
BLAKE2b-256 8712343fddff46c5de2e46f28ca4dd914165e4221e0d4d869a2a859d2544a3a5

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65a2689fcaf8dd3a1c1eda9b7782bd40a9814d41835e81fdbd12a2cade8a32df
MD5 c975fb0c7d10b4301d186e7ec7ce484c
BLAKE2b-256 d89342547089dde32f14d8b3669d0f61181e235bff4b24b4c27b8d97c2d0db25

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fffa6beb62367544bb0ef41c5a7da5df188f0074f6b4f514a458c39b4294268b
MD5 bc739c0742373f78126ad8c540cccd9b
BLAKE2b-256 0f56cc36b9b63779811414c8f507ef08b9207057af20c0a8e0b55ec701236b7e

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5a2b348447d18ffc5e16a87fc901c303c2b6a3f6d36556e7997b930d88a86897
MD5 ce80baf0398e9082c46746f819317e29
BLAKE2b-256 b77444ac471c83b93d6bb5a89ddd845d41e8482d5663cfcc5f2e55de9a1e549d

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 97c7eb476a113e02f7ba0fd65b938d498cbed3eeeb9555e8abc02ef2c626512b
MD5 772a64a73cdab8bb4b14d301cc9f988b
BLAKE2b-256 10b72d4d85e7592d85f271cb25c40d63b2eca5a0376ea68dbbf5f08a59e3adf1

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c5dcc3fd98b40edc48bf8c6445f49f38dabccbde9867e9941055364ef7814146
MD5 477abaec97a3c5f081b515097ffdeb98
BLAKE2b-256 2724bab004432ea7446c1c80a9163a29be33522f392edf0d4e61dce2489e3dc3

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0794bd1951f741dd40dc08a8cd2d36635d1855fa6f298a936c01775f7db18e2a
MD5 31843b858da55ef411c4a4d7997e5493
BLAKE2b-256 a8df9078c0ef17b47e0a39590a5115989ea8bf67ded0f9feba1b75415722de68

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f6f5f48b002355ddaa249590b789a58ed7657f67aaae62da553b323ce18e42ca
MD5 1d57c76648961abe087226b1096a3bbb
BLAKE2b-256 7272fee24d43bbd31e20ff51f1d50a6655929f5774d7fd2b71a87bb8969e3885

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d8d9a9c65ff11dbfb5dcc64749cb31044b771a7072ec042c0044fd7636d27784
MD5 7d25f06523396b27768f07657a3e898b
BLAKE2b-256 5040771ae7dbb389bc3063765f736553594ef472c784ce6aeac949ac4e74c863

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4f91a61b069bde9b3cd53ccf72e499de0ba2baefa781e852364ffe56c702c59f
MD5 fa2220df509cf463671da6348b614996
BLAKE2b-256 2935e27d5e93e4b05fcf8772b6f1bb82e884d681c8191dcf2bdeece36d6595ef

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xorbits-0.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for xorbits-0.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ace9b9c20c360806ff3d02da1fe3e63b5c75a220a0c589a8b4981127ec29a687
MD5 b3014e0405fe2aadac4ae4baf09352a9
BLAKE2b-256 f3abf1043b26fbe1284610278ee0365dfe8f64cbfddc13302226ab27a09fb72d

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13d50d36b50878e9bc4c51994237c2fef1b91558a8abef5289172ff5d4f32a48
MD5 a6531468a8b601fb6e2c1f9b5c74d006
BLAKE2b-256 02bf2a0407ff7813455997c0bc6d38722e3183f329cc1ee0dffc40800377ccf7

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc64770d7837a955b0ac4ed3dd07141dc4a67732eb4f6e425069146e306a1417
MD5 a7b0820014fb793b7611a395337bec7a
BLAKE2b-256 144af22380fdadf55b755a4a3728addf6a4158f8de14603ab43eb9ae31aa729b

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 96c3457e4a278916a2a4cb6f76d54bb08f86229b994112bcf7aa7d47b6edba90
MD5 cae178b8af722c60bed6d220119da66f
BLAKE2b-256 865fac3d72d925c1b7a762541ecfb44df24d4aee8c7ed772b1f8d77cbce2c9ca

See more details on using hashes here.

File details

Details for the file xorbits-0.7.1-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for xorbits-0.7.1-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f3b7d996019c245589f4b5bb44bce048b2200beb53cd40cfcbfa0854c8ec2635
MD5 9603423fd54f7b8681dc035fbb6e0f85
BLAKE2b-256 399ada1e6c26954484bd388c9bcc30340f47f488d4d8b1de48cbbc2e4c1fd6dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page