Skip to main content

Compute cross sectional area of 3d shapes.

Project description

PyPI version

xs3d: Compute cross sectional area for 3D image objects

import xs3d

# let binary image be a boolean numpy array 
# in fortran order that is 500 x 500 x 500 voxels
# containing a shape, which may have multiple 
# connected components, representing e.g. a neuron
binary_image = np.load(...)

# a point inside the shape (must be integer)
vertex = np.array([200,121,78])
# normal vector defining sectioning plane
# it doesn't have to be a unit vector
# vector can be of arbitrary orientation
# This vector is given in voxel space, 
# not physical space (i.e. divide by anisotropy)!
normal = np.array([0.01, 0.033, 0.9])

# voxel dimensions in e.g. nanometers
resolution = np.array([32,32,40]) 

# cross sectional area returned as a float
area = xs3d.cross_sectional_area(binary_image, vertex, normal, resolution)

# optionally return a bitfield that tells you if the section
# plane touched the image border, indicating a possible
# underestimate of the area if the image is a cutout of
# a larger scene.
# if the bitfield is > 0, then some edge contact is made
# the bitfield order is -x+x-y+y-z+z00
# where - means left edge (0), and + means right edge (size-1)
# and 0 means unused
area, contact_warning = xs3d.cross_sectional_area(
	binary_image, vertex, normal, resolution, 
	return_contact=True
)

# Returns the cross section as a float32 3d image
# where each voxel represents its contribution
# to the cross sectional area
image = xs3d.cross_section(
	binary_image, vertex, 
	normal, resolution, 
)

# Get a slice of a 3d image in any orientation.
# Note: result may be reflected or transposed
# compared with what you might expect.
image2d = xs3d.slice(labels, vertex, normal, anisotropy)

Installation

pip install xs3d

Cross Section Calculation

When using skeletons (one dimensional stick figure representations) to create electrophysiological compartment simulations of neurons, some additional information is required for accuracy. The caliber of the neurite changes over the length of the cell.

Previously, the radius from the current skeleton vertex to the nearest background voxel was used, but this was often an underestimate as it is sensitive to noise and divots in a shape.

A superior measure would be the cross sectional area using a section plane that is orthogonal to the direction of travel along the neurite. This library provides that missing capability.

How Does it Work?

The algorithm roughly works as follows.

  1. Label voxels that are intercepted by the sectioning plane.
  2. Label the connected components of those voxels.
  3. Filter out all components except the region of interest.
  4. Compute the polygon formed by the intersection of the plane with the 8 corners and 12 edges of each voxel.
  5. Add up the area contributed by each polygon so formed in the component of interest.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

xs3d-1.6.0.tar.gz (30.9 kB view details)

Uploaded Source

Built Distributions

xs3d-1.6.0-cp312-cp312-win_amd64.whl (92.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

xs3d-1.6.0-cp312-cp312-win32.whl (86.3 kB view details)

Uploaded CPython 3.12 Windows x86

xs3d-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (137.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (129.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp312-cp312-macosx_11_0_arm64.whl (94.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

xs3d-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl (101.8 kB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

xs3d-1.6.0-cp311-cp311-win_amd64.whl (93.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

xs3d-1.6.0-cp311-cp311-win32.whl (86.8 kB view details)

Uploaded CPython 3.11 Windows x86

xs3d-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138.1 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (144.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

xs3d-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (130.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp311-cp311-macosx_11_0_arm64.whl (97.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

xs3d-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl (104.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

xs3d-1.6.0-cp310-cp310-win_amd64.whl (93.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

xs3d-1.6.0-cp310-cp310-win32.whl (86.1 kB view details)

Uploaded CPython 3.10 Windows x86

xs3d-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (143.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

xs3d-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (129.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp310-cp310-macosx_11_0_arm64.whl (95.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

xs3d-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl (102.8 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

xs3d-1.6.0-cp39-cp39-win_amd64.whl (93.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

xs3d-1.6.0-cp39-cp39-win32.whl (86.2 kB view details)

Uploaded CPython 3.9 Windows x86

xs3d-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (143.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

xs3d-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (129.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp39-cp39-macosx_11_0_arm64.whl (95.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

xs3d-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl (102.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

xs3d-1.6.0-cp38-cp38-win_amd64.whl (93.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

xs3d-1.6.0-cp38-cp38-win32.whl (86.2 kB view details)

Uploaded CPython 3.8 Windows x86

xs3d-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (136.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (143.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

xs3d-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (129.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp38-cp38-macosx_11_0_arm64.whl (95.7 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

xs3d-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl (102.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

xs3d-1.6.0-cp37-cp37m-win_amd64.whl (93.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

xs3d-1.6.0-cp37-cp37m-win32.whl (86.8 kB view details)

Uploaded CPython 3.7m Windows x86

xs3d-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (145.5 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

xs3d-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (132.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (102.4 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

xs3d-1.6.0-cp36-cp36m-win_amd64.whl (93.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

xs3d-1.6.0-cp36-cp36m-win32.whl (86.8 kB view details)

Uploaded CPython 3.6m Windows x86

xs3d-1.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

xs3d-1.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (145.5 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

xs3d-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (132.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

xs3d-1.6.0-cp36-cp36m-macosx_10_9_x86_64.whl (102.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file xs3d-1.6.0.tar.gz.

File metadata

  • Download URL: xs3d-1.6.0.tar.gz
  • Upload date:
  • Size: 30.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0.tar.gz
Algorithm Hash digest
SHA256 6b85328503018bac4ec7dbdfeedf7cd900e6d5cf4c770256d00a32f1845c5d23
MD5 e979b7820b0f2181737b3ebc7033db25
BLAKE2b-256 d41a065a9988ca2b9781d3c38e3e4ef1fef0d0c37ce0283431931de794e41086

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 92.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 7c2706babd5eae9cc1ef9b1643693ddada432b4898a9d95aff2b2dbc1e7ab7ff
MD5 11e816d42542d5acc1fb1a5675aee544
BLAKE2b-256 7863f323a2e5fa9e7270afb2d3fcb3524eca365abf59d0f687cfb0e22b207f4b

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 86.3 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 f5fa46a6e9299b87438777870498dcf122e8d87a738c9999ff058b2400612e05
MD5 b5c336315f305e2e8b89c67c833c658f
BLAKE2b-256 bff95543449475d88d6c3e636c8b6c64bf53875ad9177210a0731da8724dd2a6

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bdeea7bb35d3449db8b20ae590b39f8eaded973127359454eebab012e98190dd
MD5 830cd33cc74125e8eb4e5a52e4088bbe
BLAKE2b-256 258ab0506ef5fa51eb74f7a47c35895961a63f4e612a0442b60581e4ca5ae3f9

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8568a88038342d46ce4293ce64c3c5aa5335ecf22138579702aa5c7eb6304569
MD5 c4a795a5c35caf5d2c45545ba9ac9b6f
BLAKE2b-256 4b0e5290314dca8270c863ce9ce2690d403fd498969a03b031fc9bb4c6ff703c

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c1ad05613f5c6a57ea612e751d8ceebea0b15c6afec78e78a37f07ff49c5a3f6
MD5 9a12c895cb27a2c961961023eca7f927
BLAKE2b-256 d1a44a5ba5ab4fcf52cf2131ae82dac8737f975be67f0f8ffde12a2d1e404399

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3ec2abf51939445af7933dc20bf7f4533502175c0bb18b373687c7dc3c19e55
MD5 052bd8a3aaf4f950d4515ec3121df126
BLAKE2b-256 df750433450047b6d97a480c4c764345e3da695cde07d6c137237c5d4b8adefb

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 93.7 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c3fd294362a837c73eec32fb82ff7c83c44f723f041d847ffa9f08985e42371f
MD5 63f013c39ee1b3a8f8d543c30967a75a
BLAKE2b-256 663848ed460cca8df4fe819f2cd832df0e752f9642c0d617647c98c7e7779c27

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 86.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 1926790949911740edb81a2e9b8ae3fa1e9a37670175eb73d6acee9bae7888b0
MD5 1f5a542667e40e8c49fa88d20b561bfe
BLAKE2b-256 dc2d12ac7d5d12a53ee55db4b18f77bb4d6e5120a47f89929a9661d10e766fea

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e0195282dabacf0c00f56b4b636f6aa974720cd7d86ee89c34dd2b3a443902a1
MD5 5f51fe45e6a696948d16bf644e97bfee
BLAKE2b-256 418ba28c64390eddf4b9d5d08853ac113a26c51eab194e504a64c89b3cd54fed

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b7388100e564f59beeac8e4440be4108789146d1c297fc96a2c56d2ce79f9aad
MD5 d8acab91c018a81b653056c69dfe62be
BLAKE2b-256 f94bd6d060e6d640cdc1af2a4b12d34015cd4d7d6a7708f0cc2e751f23ee4b9c

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4b76952dce8a9265cdf67f3334075966c8ae6066a173368c952bb1b414224083
MD5 9216f54181acb4d15a0e99f79b2d772d
BLAKE2b-256 438bb21249f2223b70d409f9aa04db0bda36c3ba73ff17dda4c5f337432a8955

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55cf9c3c082f8eeac080df7c2221aca09ef8f8d6cc4bcebaed40f140439ebb56
MD5 7cd41777e057dc2bc1fdcfcbc7b60c81
BLAKE2b-256 f75535e47537190b1191e8284a9a366358d2da51cd3b179669252d2c0db847fe

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 972b2201cb69e36010f352be00e262b1a8601ce7b3b270f151fe8e2e4b0279a1
MD5 82b043ed11572fe0abd575c8292d8cd9
BLAKE2b-256 7380d91d2baa21cc66e31eedc2a045e99d46f485dc2fdf2b8720ddf92bccf773

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 93.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bd7085b34ffae276658a6adc14731a083790396d0ad12f836f28f32817eff02e
MD5 db4f9ea0881b6381170bcf0df880f766
BLAKE2b-256 099a15ca44f3e65b10d5cd853efeff6c22f91559b77b70303ef4f97f9d04dd52

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 86.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 19572bd937494f3aeb07fb055e3d37034f1e67d24253935d02151d8be24a5cca
MD5 f0500718f10ee00434ec92b57dc347d5
BLAKE2b-256 e3ee5ef368a9b949673daae5387fb7fb2cf0f40e48c31290177f6b9b07ac688e

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b9806b99e89d918d91320f017eefa4758a4fa7e16e2c76c9fac7762c76f9e2d8
MD5 f562f475dfc04a607058f894ca37a127
BLAKE2b-256 ab4fc5af32ebf420831ade4ac7c83226b5aee25d8209e0be13ba4d4ceadd8e16

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 521eaf17bf802766cab1a644c1289f21eadab115b829b6f44abdb82d3f0fb948
MD5 273d2751b0a7ad597a20ec305d38997a
BLAKE2b-256 2ca5501405ecf0cd8a29fa2f5e61d514cf4a387b8f1d1c217ff039f21b5f3e59

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 578cb3fb1c95c16cde75f2a290d270cbfff727323aa54583d00541aba651daff
MD5 8bf454bf8cbf6091190530730d2bb842
BLAKE2b-256 aeaaed60addea0d4779e611b75cd287a787f1d12ca5a83a10aa28a1f16886cfa

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 069c0660fb82818df8ac13dcbf8713de41d02fad9e2234d9141e64e8b1287bb5
MD5 52f461a4c24d15cf5161cfd69b46a475
BLAKE2b-256 8ff1e0c41f6c9e157537e7b02b49f91941e7e5720cde721fc39d486ad58b8cb5

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 245c6f2538dc816b163185e3eb68edaf15a3e34931f98bd91c91f129a7470f71
MD5 6b7abea2c6f6b2e25dec9964fd923a69
BLAKE2b-256 b61fc6ad79582c9e24230275af23ae47f86c44f22930ded32af097e94ff42759

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 93.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f3932f4aab5398afa8e7892e308880c429f0c45304a74a72c3ff2ea0834cd0c2
MD5 a7b179f45072db618473cc3a2ba05e86
BLAKE2b-256 67964527075661d5a3c71fed9f9783c4f74cf634831e5273e716b32d211fe207

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 86.2 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 dbb112c1b08f7e33c1424b313dd94bdb5c4c052126091414b9d7daa5d09f2090
MD5 43e0e0ceea1b42e91aebf86b1c80bcfe
BLAKE2b-256 79cb0267801dd8302551b2f76b8d093747c3c3c618f8783ffdc4b2d1d9e81558

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8346e6d46219701eab15306758948a82040224d0a56e152307f869d9f15d1ff5
MD5 dc2d7950af5c26d913f2d69ed57db4c3
BLAKE2b-256 850fc898bd7b9152a1cee11db8c2e445fa18dedabf8b1b68feef41957547d55b

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a94caf8813c4e027461fa9d79b330683128dee73cc287227cb1d8a3d2f7da72b
MD5 2cae63de9192e1c283324cb62e5e11dc
BLAKE2b-256 0a3b26fa90b61dabd927bcf3e5270772f401aaa48801f0ed678325ca7b4ea2cf

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b1cf1400c31e8956fa6827bd19fabd7bd5d2ea70a17ea3e815f12ae93aede3a1
MD5 c28e41e25f5e56e7f3a9487dcb257f73
BLAKE2b-256 e6bfcc0fa9b91dc75b7f588495ecf7a79fced7ef093c3b56b0fc49421db7e715

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 693d3921ae72d4d5b82ef80fda4bc6519dae370e8a1f018e03aa051be11dffea
MD5 b894bb912cfe2618b323e4cf4659cdec
BLAKE2b-256 5e67265e3852f020614ca77458e404351875c8b0378aedf4952a86deee7708b0

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2633a16601fb83dc21a7898f55ecf8b8f68c3e85689c4ccb4d77529d538befe4
MD5 82763eb3247dd0dc63ce35f0240357ed
BLAKE2b-256 1355523ebe0adbb6370c855df61433671f79c26713428d76449e46d014a7c019

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 93.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 daeb86252c39b305c9be703fb9ae89e5fa7e5622a0cf7e3cb3c3091dcc9e5b32
MD5 b3b12565f757f3ae14158349bc5ac427
BLAKE2b-256 8c83044db9e6e8b7730afb931932a4bedbe163102848f5ec8306bb0f0eac0850

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 86.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 8c4ff5ed476578f458a540324861cd5d183b4d972a528c83c94dd9a6b7a8f15b
MD5 da667417de7f7009c8d1b46d45f9bfcc
BLAKE2b-256 1a41135c479f282dc7b547117451c3f4dbdf0ff68788a4ef293d8efd0f710466

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98aa0046045f6e0624715d0e809059e04f342e25735eb2fc1d6463c1370fb40c
MD5 493cc907eaf861cb9409d93a63e0eef5
BLAKE2b-256 d567d10b394e431299b8f913b844b9d9dd9f925cf058487e453a7b2a44552a7d

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 71bf33f50e1dc27e9a0e33df7c2e991bfd0cd59aeb659e88b21810197c68dac7
MD5 b1b692ffc5161074bb140ac1b9ad4c83
BLAKE2b-256 018c29c1f355c0cb6e0f366ba158197f7a617203ac26c15eee1db66a6cc4f6bf

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3e8dce58b77d3aa055b2f83df21662a8f72f73c7fec895ae0920926e10819c53
MD5 f3d864c9085c72573c6813760ab861b9
BLAKE2b-256 fdd07f16c738a2f5ea3ab3c076d45f0547e6d0f0dbdec51cb351d71693f33471

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 57670b81587aa474300d32c2049c083dd44daa0d964163fbb5dc0995ea231599
MD5 2ba9391ca579a3ac5872d697cfe254aa
BLAKE2b-256 36e94c16cd8cfc999a23c36f1d80f0451fc04e11b5f6899aa51302b0f51bb5d9

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 670fc1f104beaf2fa43519328f922db9e961f3f74ed20639ed363a74a6076b47
MD5 3f90cf942b50bd1076dc96cbb18d2bce
BLAKE2b-256 4b8452ce044624401a65adbf72576a4eba677dee1cbe85e2792996a2f739bc36

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 93.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 4767300d2b3817740e9591e31b783c5363f8a6ad3afd2abe55ffa4b1be7a8b1d
MD5 54e5c9baef98e80b9114553fc60143b6
BLAKE2b-256 97af74bcc1ce4a0a9dbe1a9ce463cc922ff452551cc0dcc8e69fd1f0f9e508b0

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 86.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 7bcd8ea6ee46d0404fb8828305e01c7bf93ac1a1fc6634ab08f800074109e7c3
MD5 eced96821d3dd7e405bfe4851652fd70
BLAKE2b-256 46d170bd3df5861dd77e2e7f0263c641e2ec305363e754bb976bd01a56a7af24

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9da642c08e7e17d23be2cea7065b75686b7b0a5c1dc47e91bb7f166305151c7
MD5 75dc46f6d80f983ed266d0cb7097c73a
BLAKE2b-256 748ad49a9728ee2abde15a0b8126cc9972c1ab69f185ce4cffa31f32a89bbf8c

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8a0d30fbd887895e836be082e303e441f2e02c0edef9572e35a5466636a7e16a
MD5 aa1247f5658b58606bd59413799487b3
BLAKE2b-256 a97d96968a56430116b927d316b4a7572a5759f1d2ec51a28b10fde2ad29bcf7

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c5c8cf11f3ed3c2dd5ac1b204533dd9ba0acf21c22d5a90283d82c5cc462cca4
MD5 1cae77b8845890bded5c92af763ab9b3
BLAKE2b-256 bb40cf4fda69582136ffe0a13a479e662430e53d723065baf415f09f4838294e

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b1b2142274a26bc25c4a7e8e836e118846cfc9458a63d6f0f932cb91dfa1d59
MD5 57207d31fd62f2cfb6422bd07f8196d9
BLAKE2b-256 c47c98835ae2764c7f50a1fd3ffda0cb3b93a5a256ee828bba550f46912e6028

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 93.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ddc9961d99eaee6b8adc85ef8ba012f62e70edb6f3f5fd6c86542e29477fcdb9
MD5 bfdea618da30f47d5e011a7d2a8f2cff
BLAKE2b-256 3e392cad4be97436dd787d20cca7bf9a2f120bc47b6c80f28dd3ab479d7e365c

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: xs3d-1.6.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 86.8 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.3

File hashes

Hashes for xs3d-1.6.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 84b77bf50823fb15ee0582d4e9c720e3c99387e59b5f70f550edfe8e7f575748
MD5 7fc63b24d6245a34b1e3f74c9aff5b33
BLAKE2b-256 74464987df7ba9485dbcb228e26e012cd825e0fa0a0050838ed666d42957400b

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e09912520bc5008e6ba27cc54251e74270eb8e77311879efb178b6ea0510637f
MD5 081ea86bab31fd40a9f82eb5297f3854
BLAKE2b-256 96ac0848d34a7d2870cae7e5356d9053263934204cda0168d8fab0bda5e25fd1

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6828dcaf717762dc03dc664b0a777cfaf770e273bbafac244c2f2f184bc524ba
MD5 1e957be48c5828de8c15d31d7543afe8
BLAKE2b-256 c72355aa2141c24c290a8cce155edd5aea56b7bdad75ba5be753abcfa3a7b67b

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 04f1cdfb53242e8fe2bbdb4b054b57bf3a20e48c820612fc790ca4a7972fd74a
MD5 38af24947643f9a68276f3ad605a2baa
BLAKE2b-256 d17f95c680c7e1731c7af33114298f8c761aa0270cf2d7447e4ebef0ed6ec392

See more details on using hashes here.

File details

Details for the file xs3d-1.6.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for xs3d-1.6.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b093c6b3a9e72c6b9674ac4f6b705bf8952e266c8c7c519931808f6b0a6502a7
MD5 fa1e30dcf8ca8f1d33d58b78bccbd2a7
BLAKE2b-256 69d2c0b1d25d0d69c759dee5749fa908a26eb8ad0b92bd55561f40339d1a30ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page