Skip to main content

Tools for working with shapefiles, topographies, and polygons in xarray

Project description

xshape

https://img.shields.io/pypi/v/xshape.svg https://img.shields.io/travis/ClimateImpactLab/xshape.svg Documentation Status Updates

Tools for working with shapefiles, topographies, and polygons in xarray

Features

  • Read a shapefile and obtain an xarray DataArray of field records
  • Draw shapefile boundaries on gridded data
  • Plot xarray DataArray data indexed by shapefile records as a choropleth

Usage

Getting records for fields in a shapefile

In [1]: import xshape

In [2]: fields, polygons = xshape.parse_shapefile(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1')

In [3]: fields
Out[3]:
<xarray.Dataset>
Dimensions:   (shape: 58)
Coordinates:
  * shape     (shape) int64 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
Data variables:
    STATEFP   (shape) <U22 '06' '06' '06' '06' '06' '06' '06' '06' '06' '06' ...
    COUNTYFP  (shape) <U22 '107' '009' '047' '079' '097' '041' '023' '051' ...
    COUNTYNS  (shape) <U22 '00277318' '01675885' '00277288' '00277304' ...
    GEOID     (shape) <U22 '06107' '06009' '06047' '06079' '06097' '06041' ...
    NAME      (shape) <U22 'Tulare' 'Calaveras' 'Merced' 'San Luis Obispo' ...
    NAMELSAD  (shape) <U22 'Tulare County' 'Calaveras County' ...
    LSAD      (shape) <U22 '06' '06' '06' '06' '06' '06' '06' '06' '06' '06' ...
    CLASSFP   (shape) <U22 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' 'H1' ...
    MTFCC     (shape) <U22 'G4020' 'G4020' 'G4020' 'G4020' 'G4020' 'G4020' ...
    CSAFP     (shape) <U22 '' '' '' '' '488' '488' '' '' '' '' '488' '472' ...
    CBSAFP    (shape) <U22 '47300' '' '32900' '42020' '42220' '41860' ...
    METDIVFP  (shape) <U22 '' '' '' '' '' '41884' '' '' '' '' '36084' '' '' ...
    FUNCSTAT  (shape) <U22 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' 'A' ...
    ALAND     (shape) <U22 '12494707314' '2641820029' '5011554680' ...
    AWATER    (shape) <U22 '37391604' '43810423' '112760479' '820974619' ...
    INTPTLAT  (shape) <U22 '+36.2288317' '+38.1846184' '+37.1948063' ...
    INTPTLON  (shape) <U22 '-118.7810618' '-120.5593996' '-120.7228019' ...

Drawing shape boundaries on gridded data

In [4]: import xarray as xr, numpy as np, xshape

# generate sample data
In [5]: da = xr.DataArray(
   ...:    np.cos((
   ...:         np.arange(41*45).reshape((41, 45)) * np.arange(41*45).reshape((45, 41)
   ...:         ).T)/4e5),
   ...:    dims=('lat', 'lon'),
   ...:    coords={
   ...:        'lon': np.linspace(-125, -114, 45),
   ...:        'lat': np.linspace(32, 42, 41)})
   ...:

In [6]: da.xshape.overlay(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1',
   ...:     cmap='YlGnBu');
   ...:
docs/images/california_map.png

Plotting regional data in a choropleth

Using the xarray extension, we can plot DataArray data directly:

In [7]: import xshape, xarray as xr, pandas as pd

In [8]: df = pd.read_csv('tests/data/datasets/co-est2016.csv', encoding='latin1')
   ...: ca = df[(df['STATE'] == 6) & (df['COUNTY'] > 0)].copy()
   ...: ca['fips'] = df['STATE'] * 1000 + df['COUNTY']
   ...: da = ca.set_index(['fips'])['POPESTIMATE2016'].to_xarray()
   ...: da.coords['GEOID'] = ('fips', ), list(map('{:05}'.format, da.fips.values))
   ...: da = da.swap_dims({'fips': 'GEOID'})

In [9]: da.xshape.plot(
   ...:     'tests/data/shapefiles/CA_counties/CA_counties',
   ...:     encoding='latin1',
   ...:     cmap='YlGnBu');
   ...:
docs/images/california_map_pop.png

We can also combine the information from the fields with the data contained in the DataArray:

In [10]: land_area = (
   ....:     fields
   ....:     .set_coords('GEOID')
   ....:     .swap_dims({'shape': 'GEOID'})
   ....:     .ALAND.astype(float))

In [11]: np.log(da / land_area).xshape.plot(
   ....:     'tests/data/shapefiles/CA_counties/CA_counties',
   ....:     encoding='latin1',
   ....:     cmap='YlGnBu');
   ....:
docs/images/california_map_pop_per_m2.png

TODO

  • Use shapefiles to reshape gridded/pixel data

History

0.1.0 (2018-01-13)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
xshape-0.1.1-py2.py3-none-any.whl (9.0 kB) Copy SHA256 hash SHA256 Wheel py2.py3
xshape-0.1.1.tar.gz (3.0 MB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page