Skip to main content

Keyword extraction Python package

Project description

Yet Another Keyword Extractor (Yake)

Unsupervised Approach for Automatic Keyword Extraction using Text Features.

YAKE! is a light-weight unsupervised automatic keyword extraction method which rests on text statistical features extracted from single documents to select the most important keywords of a text. Our system does not need to be trained on a particular set of documents, neither it depends on dictionaries, external-corpus, size of the text, language or domain. To demonstrate the merits and the significance of our proposal, we compare it against ten state-of-the-art unsupervised approaches (TF.IDF, KP-Miner, RAKE, TextRank, SingleRank, ExpandRank, TopicRank, TopicalPageRank, PositionRank and MultipartiteRank), and one supervised method (KEA). Experimental results carried out on top of twenty datasets (see Benchmark section below) show that our methods significantly outperform state-of-the-art methods under a number of collections of different sizes, languages or domains. In addition to the python package here described, we also make available a demo, an API and a mobile app.

Main Features

  • Unsupervised approach
  • Corpus-Independent
  • Domain and Language Independent
  • Single-Document

Where can I find YAKE!?

YAKE! is available online [http://yake.inesctec.pt], as an open source Python package [https://github.com/LIAAD/yake] and on Google Play.

References

Please cite the following works when using YAKE

In-depth journal paper at Information Sciences Journal

Campos, R., Mangaravite, V., Pasquali, A., Jatowt, A., Jorge, A., Nunes, C. and Jatowt, A. (2020). YAKE! Keyword Extraction from Single Documents using Multiple Local Features. In Information Sciences Journal. Elsevier, Vol 509, pp 257-289. pdf

ECIR'18 Best Short Paper

Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). A Text Feature Based Automatic Keyword Extraction Method for Single Documents. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 684 - 691. pdf

Campos R., Mangaravite V., Pasquali A., Jorge A.M., Nunes C., and Jatowt A. (2018). YAKE! Collection-independent Automatic Keyword Extractor. In: Pasi G., Piwowarski B., Azzopardi L., Hanbury A. (eds). Advances in Information Retrieval. ECIR 2018 (Grenoble, France. March 26 – 29). Lecture Notes in Computer Science, vol 10772, pp. 806 - 810. pdf

Awards

ECIR'18 Best Short Paper

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for yake, version 0.4.8
Filename, size File type Python version Upload date Hashes
Filename, size yake-0.4.8-py2.py3-none-any.whl (60.2 kB) File type Wheel Python version py2.py3 Upload date Hashes View
Filename, size yake-0.4.8.tar.gz (404.3 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page