Skip to main content

YDF (short for Yggdrasil Decision Forests) is a library for training, serving, evaluating and analyzing decision forest models such as Random Forest and Gradient Boosted Trees.

Project description

Port of Yggdrasil / TensorFlow Decision Forests for Python

The Python port of Yggdrasil Decision is a light-weight wrapper around Yggdrasil Decision Forests. It allows direct, fast access to YDF's methods and it also offers advanced import / export, evaluation and inspection methods. While the package is called YDF, the wrapping code is sometimes lovingly called PYDF.

YDF is the successor of Tensorflow Decision Forests (TF-DF). TF-DF is still maintained, but new projects should choose YDF for improved performance, better model quality and more features.

Installation

To install YDF, in Python, simply grab the package from pip:

pip install ydf

For build instructions, see INSTALLATION.md.

Usage Example

import ydf
import pandas as pd

ds_path = "https://raw.githubusercontent.com/google/yggdrasil-decision-forests/main/yggdrasil_decision_forests/test_data/dataset"
train_ds = pd.read_csv(f"{ds_path}/adult_train.csv")
test_ds = pd.read_csv(f"{ds_path}/adult_test.csv")

model = ydf.GradientBoostedTreesLearner(label="income").train(train_ds)

print(model.evaluate(test_ds))

model.save("my_model")

loaded_model = ydf.load_model("my_model")

Frequently Asked Questions

See the FAQ in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ydf-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

ydf-0.11.0-cp312-cp312-macosx_12_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

ydf-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ydf-0.11.0-cp311-cp311-macosx_12_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

ydf-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ydf-0.11.0-cp310-cp310-macosx_12_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

ydf-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ydf-0.11.0-cp39-cp39-macosx_12_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

ydf-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ydf-0.11.0-cp38-cp38-macosx_12_0_arm64.whl (8.9 MB view details)

Uploaded CPython 3.8 macOS 12.0+ ARM64

File details

Details for the file ydf-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1a2f84424e487837e014514cdcfad2ac86c62c87e93c3762322aac55b7dfbff4
MD5 e75deed77904f0e6ea4b71d8a3c25e83
BLAKE2b-256 14271f5d770a4fd71b1c28b1ad83af4314a5ecd957cff5d782635c1828541146

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 33ff5976878da5e06b7084f97ab0d7a18a808f6c84154e07a60edc1abda945be
MD5 de25b883ae113d059a8e61057e9aa1e8
BLAKE2b-256 050f6869a6be10a4d0f6ce4386511044e520f0824fef0c8d3825ed3ec84c4929

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d4178b24d7830137a9fcf89f813367a03c535dcb484ce76f7bb3145d2ea9ac63
MD5 3bf4766b6f5154f574824f9ccdab92fe
BLAKE2b-256 3b0126ab8270e6dfb24282f36cb6d302832c0a63c92cb1fc16ca90bba33c9139

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 56305929ab34cca7aee1003f5056d4a71fc956487876f6cb715c6a053c5115fb
MD5 61ca39505514393b7920adb4a37cf734
BLAKE2b-256 f1bc80e6356af5d511d5d3c4de5b8537c84dda3d84968a0dab837bc8ea774750

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6ad96bdf8114ee5fa60e81e5bc1e48d8d3d1ab4dbdcacac12817fe9558eacc70
MD5 aa24bcdf6dfa453402372d90e08dbbf4
BLAKE2b-256 0e2525640bfc2e1193592222b450d1ba758ca66160bb6aae0fa04b088b37a592

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f3397c4d6ca7c20b74596a496564bdc2e2748af847625ebf50d880fe82cbf3a7
MD5 d52e9b112fc4ef3dcb073abb42cf8303
BLAKE2b-256 aed1a84e29ca49dafba993258cb8f1b9fc3591109957358213e1d3134ad969b3

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0c4d8a5c79c7246411b24c98a9b20e0a45db9884f00c85108f884385b05bcd2
MD5 0d56547f6caa4c81803135318e30c764
BLAKE2b-256 f9615f4a2bac0606e0fe64c702e73758992b9c631e212ef8d80d421186ce9aa3

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a57c9b554c45e40995101a77040d0da763d9266a68123da5fba8410d7c568b42
MD5 a3f3132d0c6d1134a254a074a5119c40
BLAKE2b-256 d6352ec3d3f3f511c3580476e603f16e7dec475d48e3ff837edceef0b8cc735c

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6b00dc2f7f1209f0dc6138c3ec44f99b374d31fe99f60ab0189e516d65923169
MD5 502cdad28bbdeff93b8b225fefea0f1e
BLAKE2b-256 e3b5e0b7c4afee6012915e3b60fc1733ee4ddbbe159a555179a181b88d5cc949

See more details on using hashes here.

File details

Details for the file ydf-0.11.0-cp38-cp38-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for ydf-0.11.0-cp38-cp38-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6fd009ba2d03a624f6f513cb4477e6e7a0d96e26518310575ff3ab36795d500c
MD5 a8e2a89c2c638dafb8fb25c1b88669e5
BLAKE2b-256 7e7514226e89854aec28e0386dde8e0530cad973049341c3cb9fb65be0bd71c0

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page