Skip to main content
Help us improve PyPI by participating in user testing. All experience levels needed!

ZAP (the Zurich Atmosphere Purge) is a high precision sky subtraction tool.

Project description

ZAP (the Zurich Atmosphere Purge)

Tired of sky subtraction residuals? ZAP them!

ZAP is a high precision sky subtraction tool which can be used as complete sky subtraction solution, or as an enhancement to previously sky-subtracted MUSE data. The method uses PCA to isolate the residual sky subtraction features and remove them from the observed datacube. Future developments will include modification for use on a variety of instruments.

The last stable release of ZAP can be installed simply with pip:

pip install zap

Or into the user path with:

pip install --user zap

Citation

The paper describing the original method can be found here: http://adsabs.harvard.edu/abs/2016MNRAS.458.3210S

Please cite ZAP as:

\bibitem[Soto et al.(2016)]{2016MNRAS.458.3210S} Soto, K.~T., Lilly, S.~J., Bacon, R., Richard, J., \& Conseil, S.\ 2016, \mnras, 458, 3210

2.0 (2017-09-08)

  • Compatibility with the WFM-AO mode.

  • Use Scikit-learn’s implementation for the PCA instead of the custom one. This solved an issue with spatial variations introduced by zap. Also it is much faster than the previous implementation. A drawback however is that it is no more possible to save the SVD file.

  • Use only one sky segment by default, which means that the cube is no more split on the wavelength axis. Originally zap used 11 segments, whose goals were to have coherent groups of sky emission lines, with a smaller number of eigenvalues per segment. And it also allowed to parallelize the computation. But, the segments were also responsible for continuum oscillations, and made the choice of the number of eigenvalues per segment very difficult and very sensitive. With only one segment the performance of the sky subtraction is much better, thanks to the higher correlation between sky lines on the whole wavelength range.

    So using only one segment allows to greatly reduce the risk of killing an emission line with the new PCA. It is still possible to modify the segments if needed:

    from zap.zap import SKYSEG
    SKYSEG[:] = [0, 5400, ..., 10000]
    
  • New continuum filter type with a polynomial fit (cftype='fit'). Must be used with care though, as the fit can easily go out of control in the red part of the spectrum.

  • Change the default median filter width to 300, for the median and weight continuum filters. The values used previously, 100 and 50, were too small which explains the background oscillations in the red part of the spectra.

  • New parameter (ncpu) to set the number of used CPU.

  • Remove the possibility to save the SVD result in a FITS file. This is because of the change of PCA implementation. It is still possible to pass the SVD computed by SVDoutput to process, passing the in-memory object directly without saving it to disk.

  • Speed improvements, mostly thanks to the new PCA implementation.

  • New parameter to save the explained variance curves.

1.0 (2016-04-02)

First public release. This is the version described in the 2016MNRAS.458.3210S paper.

Project details


Release history Release notifications

This version
History Node

2.0

History Node

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
zap-2.0-py2.py3-none-any.whl (20.4 kB) Copy SHA256 hash SHA256 Wheel py2.py3 Sep 8, 2017
zap-2.0.tar.gz (24.6 kB) Copy SHA256 hash SHA256 Source None Sep 8, 2017

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page