Skip to main content

Electrical model fitting to impedance data

Project description

Introduction

This Python module is for fitting electrical models to measured impedance data. It also includes a command-line program to assist with automated fitting.

Installation

To install from pypi use:

$ pip install zfitpy

To install from sources use:

$ pip install .

zfit

Here's an example of how model fitting can be performed using a Python script:

from zfitpy import zfit

net = "(CPE('K', 'alpha') | R('R2')) + R('R1')"
ranges = {'R1': (1e-3, 1e3), 'K': (1e-3, 1e3), 'alpha': (-1, 1), 'R2': (100, 1e4)}

data, fitmodel = zfit('E4990A-example1.csv', net, ranges, Ns=10)
print(fitmodel)
print(fitmodel.error)

Here Ns specifies the number of steps in each search range for a brute force search. It can be explicitly defined for each search range, for example,

ranges = {'R1': (1e-3, 1e3, 10), 'K': (1e-3, 1e3, 20), 'alpha': (-1, 1), 'R2': (100, 1e4)}

The default optimizer is brute force, however, this is only suitable for models with few parameters and few steps in each search range. The optimizer can be changed with the method argument to zfit, for example,

data, fitmodel = zfit('E4990A-example1.csv', net, ranges, method='trf')

method can be 'brute', 'trf', or 'dogbox'.

The fit between the measured data and best-fit model can be plotted using:

from zfitpy import Plotter
plotter = Plotter()
plotter.fit(data, fitmodel)

The error between the measured data and best-fit model can be plotted using:

from zfitpy import Plotter
plotter = Plotter()
plotter.error(data, fitmodel)

The model can be drawn using:

fitmodel.draw()

The draw method takes an optional filename to save the drawing. Supported file formats are 'pdf', 'jpg', 'png', and 'pgf', for example,

fitmodel.draw('model.pdf')

Caveats

A parameter name cannot be a substring of another parameter name, i.e., 'R' cannot be used if there is a parameter 'R1'.

zfitpy

zfitpy is a command-line Python program. It is designed for fitting electrical models to impedance data. For example:

   $ zfitpy --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv --plot-error

The network is specified using Lcapy notation for networks. This example uses a network comprised of a parallel combination of RL series networks. The network can be drawn using:

   $ zfitpy --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --draw

The network in this example has four parameters: R1, L1, R2, and L2. A brute force search is performed for each component using the specified ranges; this is refined with a finishing search. The ranges are specified as a Python dictionary, keyed by component name, with the range for each component specified as a tuple. The number of steps in each range is 20 can be altered with the --steps option.

The impedance of the data and model can be plotted using:

   $ zfitpy --plot-fit --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv

The impedance error between the data and model can be plotted using:

   $ zfitpy --plot-error --net "L('L1') + (R('R1') | (L('L2') + R('R2')))" --ranges="{'R1':(0,5e3),'L1':(1e-3,20e-3),'R2':(0,0.1),'L2':(1e-3,20e-3)}" --input demo/E4990A-example1.csv

Here's another network using a constant phase element (CPE).

   $ zfitpy --net "(CPE('K', 'alpha') | R('R2')) + R('R1')" --draw

   $ zfitpy --plot-error --net "(CPE('K', 'alpha') | R('R2')) + R('R1')"  --ranges="{'R1':(0,1e3),'K':(1e-3,1e3),'alpha':(-1,1),'R2':(1e2,1e4)}" --input demo/E4990A-example1.csv

The data format for the plots depends on the extension. matplotlib is used for the plotting and so the pdf, png, pgf, and jpg formats are all supported. For example:

   $ zfitpy --net "CPE('K', 'alpha')" --draw --output CPE.png

The data can be plotted without fitting if the ranges option is not specified. For example:

   $ zfitpy --plot-data --input demo/E4990A-example1.csv

A Nyquist plot is generated if the --nyquist option is specified. Magnitude and phase is plotted is the --magphase option is specified. The plot style can be altered using the --style option to specify a Matplotlib style file.

Other command line options for zfitpy can be found with the --help option.

Here's another example that loads the network and ranges from files. It uses a Matplotlib style file and annotates the title with the model, the optimization method, and the rms error.

   $ zfitpy --net RL2.net --ranges=RL2.ranges --input data/data.csv --plot-error --method='brute' --title='%model, %method, %rmse' --style=z.mplstyle --output RL2-brute.pdf

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

zfitpy-0.6.1.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

zfitpy-0.6.1-py3-none-any.whl (17.0 kB view details)

Uploaded Python 3

File details

Details for the file zfitpy-0.6.1.tar.gz.

File metadata

  • Download URL: zfitpy-0.6.1.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.8.10

File hashes

Hashes for zfitpy-0.6.1.tar.gz
Algorithm Hash digest
SHA256 ec34c4ab33ee8a500f1fcf420109180f62e5e165059620ae840f98e87e849965
MD5 0455eb486c41b4325c504ff9675106c5
BLAKE2b-256 ba872908c0f132fc51da13db682739ebda2940c1e02fb7ad417111d855fb02ec

See more details on using hashes here.

File details

Details for the file zfitpy-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: zfitpy-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 17.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.8.10

File hashes

Hashes for zfitpy-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 a7e7836c0c334817d0ffb1e19ee0b3edda7c36583f08daedc20c14902a637d9d
MD5 23eca762b101b2d331af3f9a12b668ea
BLAKE2b-256 e82a34e0d690ba17c8adbd1d35d8295d6d3a814af6e7259cc13c8cd59773a8fa

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page