Skip to main content
Join the official 2019 Python Developers SurveyStart the survey!

Minimalistic Python Machine Learning Toolkit.

Project description

zeta-learn

zeta-learn is a minimalistic python machine learning library designed to deliver fast and easy model prototyping.

zeta-learn aims to provide an extensive understanding of machine learning through the use of straightforward algorithms and readily implemented examples making it a useful resource for researchers and students.

Dependencies

  • numpy >= 1.15.0
  • matplotlib >= 2.0.0

Features

  • Keras like Sequential API for building models.
  • Built on Numpy and Matplotlib.
  • Examples folder with readily implemented machine learning models.

Install

  • pip install ztlearn

Examples

Principal Component Analysis (PCA) ##################################

DIGITS Dataset - PCA <https://github.com/jefkine/zeta-learn/blob/master/examples/digits/digits_pca.py>_

.. image:: /examples/plots/results/pca/digits_pca.png :align: center :alt: digits pca

MNIST Dataset - PCA <https://github.com/jefkine/zeta-learn/blob/master/examples/mnist/mnist_pca.py>_

.. image:: /examples/plots/results/pca/mnist_pca.png :align: center :alt: mnist pca

KMEANS

K-Means Clustering (4 Clusters) <https://github.com/jefkine/zeta-learn/blob/master/examples/clusters/kmeans_cluestering.py>_

.. image:: /examples/plots/results/kmeans/k_means_4_clusters.png :align: center :alt: k-means (4 clusters)

Convolutional Neural Network (CNN) ##################################

DIGITS Dataset Model Summary <https://github.com/jefkine/zeta-learn/blob/master/examples/digits/digits_cnn.py>_

.. code:: html

DIGITS CNN

Input Shape: (1, 8, 8) +---------------------+---------+--------------+ ¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦ +---------------------+---------+--------------+ ¦ Conv2D ¦ 320 ¦ (32, 8, 8) ¦ ¦ Activation: RELU ¦ 0 ¦ (32, 8, 8) ¦ ¦ Dropout ¦ 0 ¦ (32, 8, 8) ¦ ¦ BatchNormalization ¦ 4,096 ¦ (32, 8, 8) ¦ ¦ Conv2D ¦ 18,496 ¦ (64, 8, 8) ¦ ¦ Activation: RELU ¦ 0 ¦ (64, 8, 8) ¦ ¦ MaxPooling2D ¦ 0 ¦ (64, 7, 7) ¦ ¦ Dropout ¦ 0 ¦ (64, 7, 7) ¦ ¦ BatchNormalization ¦ 6,272 ¦ (64, 7, 7) ¦ ¦ Flatten ¦ 0 ¦ (3,136,) ¦ ¦ Dense ¦ 803,072 ¦ (256,) ¦ ¦ Activation: RELU ¦ 0 ¦ (256,) ¦ ¦ Dropout ¦ 0 ¦ (256,) ¦ ¦ BatchNormalization ¦ 512 ¦ (256,) ¦ ¦ Dense ¦ 2,570 ¦ (10,) ¦ +---------------------+---------+--------------+

TOTAL PARAMETERS: 835,338

DIGITS Dataset Model Results

.. image:: /examples/plots/results/cnn/digits_cnn_tiled_results.png :align: center :alt: digits cnn results tiled

DIGITS Dataset Model Loss

.. image:: /examples/plots/results/cnn/digits_cnn_loss_graph.png :align: center :alt: digits model loss

DIGITS Dataset Model Accuracy

.. image:: /examples/plots/results/cnn/digits_cnn_accuracy_graph.png :align: center :alt: digits model accuracy

MNIST Dataset Model Summary <https://github.com/jefkine/zeta-learn/blob/master/examples/mnist/mnist_cnn.py>_

.. code:: html

MNIST CNN

Input Shape: (1, 28, 28) +---------------------+------------+--------------+ ¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦ +---------------------+------------+--------------+ ¦ Conv2D ¦ 320 ¦ (32, 28, 28) ¦ ¦ Activation: RELU ¦ 0 ¦ (32, 28, 28) ¦ ¦ Dropout ¦ 0 ¦ (32, 28, 28) ¦ ¦ BatchNormalization ¦ 50,176 ¦ (32, 28, 28) ¦ ¦ Conv2D ¦ 18,496 ¦ (64, 28, 28) ¦ ¦ Activation: RELU ¦ 0 ¦ (64, 28, 28) ¦ ¦ MaxPooling2D ¦ 0 ¦ (64, 27, 27) ¦ ¦ Dropout ¦ 0 ¦ (64, 27, 27) ¦ ¦ BatchNormalization ¦ 93,312 ¦ (64, 27, 27) ¦ ¦ Flatten ¦ 0 ¦ (46,656,) ¦ ¦ Dense ¦ 11,944,192 ¦ (256,) ¦ ¦ Activation: RELU ¦ 0 ¦ (256,) ¦ ¦ Dropout ¦ 0 ¦ (256,) ¦ ¦ BatchNormalization ¦ 512 ¦ (256,) ¦ ¦ Dense ¦ 2,570 ¦ (10,) ¦ +---------------------+------------+--------------+

TOTAL PARAMETERS: 12,109,578

MNIST Dataset Model Results

.. image:: /examples/plots/results/cnn/mnist_cnn_tiled_results.png :align: center :alt: mnist cnn results tiled

Regression ##########

Linear Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_linear_regression.py>_

.. image:: /examples/plots/results/regression/linear_regression.png :align: center :alt: linear regression

Polynomial Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_polynomial_regression.py>_

.. image:: /examples/plots/results/regression/polynomial_regression.png :align: center :alt: polynomial regression

Elastic Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_elastic_regression.py>_

.. image:: /examples/plots/results/regression/elastic_regression.png :align: center :alt: elastic regression

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for ztlearn, version 1.1.5
Filename, size File type Python version Upload date Hashes
Filename, size ztlearn-1.1.5-py3-none-any.whl (70.6 kB) File type Wheel Python version py3 Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page