Minimalistic Python Machine Learning Toolkit.
Project description
zeta-learn
zeta-learn is a minimalistic python machine learning library designed to deliver fast and easy model prototyping.
zeta-learn aims to provide an extensive understanding of machine learning through the use of straightforward algorithms and readily implemented examples making it a useful resource for researchers and students.
- Documentation: https://zeta-learn.com
- Python versions: 3.5 and above
- Free software: MIT license
Dependencies
- numpy >= 1.15.0
- matplotlib >= 2.0.0
Features
- Keras like Sequential API for building models.
- Built on Numpy and Matplotlib.
- Examples folder with readily implemented machine learning models.
Install
- pip install ztlearn
Examples
Principal Component Analysis (PCA) ##################################
DIGITS Dataset - PCA <https://github.com/jefkine/zeta-learn/blob/master/examples/digits/digits_pca.py>_
.. image:: /examples/plots/results/pca/digits_pca.png :align: center :alt: digits pca
MNIST Dataset - PCA <https://github.com/jefkine/zeta-learn/blob/master/examples/mnist/mnist_pca.py>_
.. image:: /examples/plots/results/pca/mnist_pca.png :align: center :alt: mnist pca
KMEANS
K-Means Clustering (4 Clusters) <https://github.com/jefkine/zeta-learn/blob/master/examples/clusters/kmeans_cluestering.py>_
.. image:: /examples/plots/results/kmeans/k_means_4_clusters.png :align: center :alt: k-means (4 clusters)
Convolutional Neural Network (CNN) ##################################
DIGITS Dataset Model Summary <https://github.com/jefkine/zeta-learn/blob/master/examples/digits/digits_cnn.py>_
.. code:: html
DIGITS CNN
Input Shape: (1, 8, 8) +---------------------+---------+--------------+ ¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦ +---------------------+---------+--------------+ ¦ Conv2D ¦ 320 ¦ (32, 8, 8) ¦ ¦ Activation: RELU ¦ 0 ¦ (32, 8, 8) ¦ ¦ Dropout ¦ 0 ¦ (32, 8, 8) ¦ ¦ BatchNormalization ¦ 4,096 ¦ (32, 8, 8) ¦ ¦ Conv2D ¦ 18,496 ¦ (64, 8, 8) ¦ ¦ Activation: RELU ¦ 0 ¦ (64, 8, 8) ¦ ¦ MaxPooling2D ¦ 0 ¦ (64, 7, 7) ¦ ¦ Dropout ¦ 0 ¦ (64, 7, 7) ¦ ¦ BatchNormalization ¦ 6,272 ¦ (64, 7, 7) ¦ ¦ Flatten ¦ 0 ¦ (3,136,) ¦ ¦ Dense ¦ 803,072 ¦ (256,) ¦ ¦ Activation: RELU ¦ 0 ¦ (256,) ¦ ¦ Dropout ¦ 0 ¦ (256,) ¦ ¦ BatchNormalization ¦ 512 ¦ (256,) ¦ ¦ Dense ¦ 2,570 ¦ (10,) ¦ +---------------------+---------+--------------+
TOTAL PARAMETERS: 835,338
DIGITS Dataset Model Results
.. image:: /examples/plots/results/cnn/digits_cnn_tiled_results.png :align: center :alt: digits cnn results tiled
DIGITS Dataset Model Loss
.. image:: /examples/plots/results/cnn/digits_cnn_loss_graph.png :align: center :alt: digits model loss
DIGITS Dataset Model Accuracy
.. image:: /examples/plots/results/cnn/digits_cnn_accuracy_graph.png :align: center :alt: digits model accuracy
MNIST Dataset Model Summary <https://github.com/jefkine/zeta-learn/blob/master/examples/mnist/mnist_cnn.py>_
.. code:: html
MNIST CNN
Input Shape: (1, 28, 28) +---------------------+------------+--------------+ ¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦ +---------------------+------------+--------------+ ¦ Conv2D ¦ 320 ¦ (32, 28, 28) ¦ ¦ Activation: RELU ¦ 0 ¦ (32, 28, 28) ¦ ¦ Dropout ¦ 0 ¦ (32, 28, 28) ¦ ¦ BatchNormalization ¦ 50,176 ¦ (32, 28, 28) ¦ ¦ Conv2D ¦ 18,496 ¦ (64, 28, 28) ¦ ¦ Activation: RELU ¦ 0 ¦ (64, 28, 28) ¦ ¦ MaxPooling2D ¦ 0 ¦ (64, 27, 27) ¦ ¦ Dropout ¦ 0 ¦ (64, 27, 27) ¦ ¦ BatchNormalization ¦ 93,312 ¦ (64, 27, 27) ¦ ¦ Flatten ¦ 0 ¦ (46,656,) ¦ ¦ Dense ¦ 11,944,192 ¦ (256,) ¦ ¦ Activation: RELU ¦ 0 ¦ (256,) ¦ ¦ Dropout ¦ 0 ¦ (256,) ¦ ¦ BatchNormalization ¦ 512 ¦ (256,) ¦ ¦ Dense ¦ 2,570 ¦ (10,) ¦ +---------------------+------------+--------------+
TOTAL PARAMETERS: 12,109,578
MNIST Dataset Model Results
.. image:: /examples/plots/results/cnn/mnist_cnn_tiled_results.png :align: center :alt: mnist cnn results tiled
Regression ##########
Linear Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_linear_regression.py>_
.. image:: /examples/plots/results/regression/linear_regression.png :align: center :alt: linear regression
Polynomial Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_polynomial_regression.py>_
.. image:: /examples/plots/results/regression/polynomial_regression.png :align: center :alt: polynomial regression
Elastic Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_elastic_regression.py>_
.. image:: /examples/plots/results/regression/elastic_regression.png :align: center :alt: elastic regression
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file ztlearn-1.1.5-py3-none-any.whl.
File metadata
- Download URL: ztlearn-1.1.5-py3-none-any.whl
- Upload date:
- Size: 70.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
43295653d78d34657d90094d5bf8c9abe4b85f99a1d408a4503e160cd9e2c42b
|
|
| MD5 |
b5efff6bab29fac12cdfe91a5a52c077
|
|
| BLAKE2b-256 |
41a037d424c5842d7ad53de423040356a49fdd5cf3bfe35fc6103ba00576d034
|