Skip to main content

Minimalistic Python Machine Learning Toolkit.

Project description

zeta-learn

zeta-learn is a minimalistic python machine learning library designed to deliver fast and easy model prototyping.

zeta-learn aims to provide an extensive understanding of machine learning through the use of straightforward algorithms and readily implemented examples making it a useful resource for researchers and students.

Dependencies

  • numpy >= 1.15.0
  • matplotlib >= 2.0.0

Features

  • Keras like Sequential API for building models.
  • Built on Numpy and Matplotlib.
  • Examples folder with readily implemented machine learning models.

Install

  • pip install ztlearn

Examples

Principal Component Analysis (PCA) ##################################

DIGITS Dataset - PCA <https://github.com/jefkine/zeta-learn/blob/master/examples/digits/digits_pca.py>_

.. image:: /examples/plots/results/pca/digits_pca.png :align: center :alt: digits pca

MNIST Dataset - PCA <https://github.com/jefkine/zeta-learn/blob/master/examples/mnist/mnist_pca.py>_

.. image:: /examples/plots/results/pca/mnist_pca.png :align: center :alt: mnist pca

KMEANS

K-Means Clustering (4 Clusters) <https://github.com/jefkine/zeta-learn/blob/master/examples/clusters/kmeans_cluestering.py>_

.. image:: /examples/plots/results/kmeans/k_means_4_clusters.png :align: center :alt: k-means (4 clusters)

Convolutional Neural Network (CNN) ##################################

DIGITS Dataset Model Summary <https://github.com/jefkine/zeta-learn/blob/master/examples/digits/digits_cnn.py>_

.. code:: html

DIGITS CNN

Input Shape: (1, 8, 8) +---------------------+---------+--------------+ ¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦ +---------------------+---------+--------------+ ¦ Conv2D ¦ 320 ¦ (32, 8, 8) ¦ ¦ Activation: RELU ¦ 0 ¦ (32, 8, 8) ¦ ¦ Dropout ¦ 0 ¦ (32, 8, 8) ¦ ¦ BatchNormalization ¦ 4,096 ¦ (32, 8, 8) ¦ ¦ Conv2D ¦ 18,496 ¦ (64, 8, 8) ¦ ¦ Activation: RELU ¦ 0 ¦ (64, 8, 8) ¦ ¦ MaxPooling2D ¦ 0 ¦ (64, 7, 7) ¦ ¦ Dropout ¦ 0 ¦ (64, 7, 7) ¦ ¦ BatchNormalization ¦ 6,272 ¦ (64, 7, 7) ¦ ¦ Flatten ¦ 0 ¦ (3,136,) ¦ ¦ Dense ¦ 803,072 ¦ (256,) ¦ ¦ Activation: RELU ¦ 0 ¦ (256,) ¦ ¦ Dropout ¦ 0 ¦ (256,) ¦ ¦ BatchNormalization ¦ 512 ¦ (256,) ¦ ¦ Dense ¦ 2,570 ¦ (10,) ¦ +---------------------+---------+--------------+

TOTAL PARAMETERS: 835,338

DIGITS Dataset Model Results

.. image:: /examples/plots/results/cnn/digits_cnn_tiled_results.png :align: center :alt: digits cnn results tiled

DIGITS Dataset Model Loss

.. image:: /examples/plots/results/cnn/digits_cnn_loss_graph.png :align: center :alt: digits model loss

DIGITS Dataset Model Accuracy

.. image:: /examples/plots/results/cnn/digits_cnn_accuracy_graph.png :align: center :alt: digits model accuracy

MNIST Dataset Model Summary <https://github.com/jefkine/zeta-learn/blob/master/examples/mnist/mnist_cnn.py>_

.. code:: html

MNIST CNN

Input Shape: (1, 28, 28) +---------------------+------------+--------------+ ¦ LAYER TYPE ¦ PARAMS ¦ OUTPUT SHAPE ¦ +---------------------+------------+--------------+ ¦ Conv2D ¦ 320 ¦ (32, 28, 28) ¦ ¦ Activation: RELU ¦ 0 ¦ (32, 28, 28) ¦ ¦ Dropout ¦ 0 ¦ (32, 28, 28) ¦ ¦ BatchNormalization ¦ 50,176 ¦ (32, 28, 28) ¦ ¦ Conv2D ¦ 18,496 ¦ (64, 28, 28) ¦ ¦ Activation: RELU ¦ 0 ¦ (64, 28, 28) ¦ ¦ MaxPooling2D ¦ 0 ¦ (64, 27, 27) ¦ ¦ Dropout ¦ 0 ¦ (64, 27, 27) ¦ ¦ BatchNormalization ¦ 93,312 ¦ (64, 27, 27) ¦ ¦ Flatten ¦ 0 ¦ (46,656,) ¦ ¦ Dense ¦ 11,944,192 ¦ (256,) ¦ ¦ Activation: RELU ¦ 0 ¦ (256,) ¦ ¦ Dropout ¦ 0 ¦ (256,) ¦ ¦ BatchNormalization ¦ 512 ¦ (256,) ¦ ¦ Dense ¦ 2,570 ¦ (10,) ¦ +---------------------+------------+--------------+

TOTAL PARAMETERS: 12,109,578

MNIST Dataset Model Results

.. image:: /examples/plots/results/cnn/mnist_cnn_tiled_results.png :align: center :alt: mnist cnn results tiled

Regression ##########

Linear Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_linear_regression.py>_

.. image:: /examples/plots/results/regression/linear_regression.png :align: center :alt: linear regression

Polynomial Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_polynomial_regression.py>_

.. image:: /examples/plots/results/regression/polynomial_regression.png :align: center :alt: polynomial regression

Elastic Regression <https://github.com/jefkine/zeta-learn/blob/master/examples/boston/boston_elastic_regression.py>_

.. image:: /examples/plots/results/regression/elastic_regression.png :align: center :alt: elastic regression

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

ztlearn-1.1.5-py3-none-any.whl (70.6 kB view details)

Uploaded Python 3

File details

Details for the file ztlearn-1.1.5-py3-none-any.whl.

File metadata

  • Download URL: ztlearn-1.1.5-py3-none-any.whl
  • Upload date:
  • Size: 70.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.7

File hashes

Hashes for ztlearn-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 43295653d78d34657d90094d5bf8c9abe4b85f99a1d408a4503e160cd9e2c42b
MD5 b5efff6bab29fac12cdfe91a5a52c077
BLAKE2b-256 41a037d424c5842d7ad53de423040356a49fdd5cf3bfe35fc6103ba00576d034

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page