Skip to main content

NEURON Modeling Language Source-to-Source Compiler Framework

Project description

NMODL has been fully integrated into the NEURON repository. There will be no further development efforts on NMODL as an independent project.

All future development will happen at: https://github.com/neuronsimulator/nrn.


The NMODL Framework is a code generation engine for NEURON MODeling Language (NMODL). It is designed with modern compiler and code generation techniques to:

  • Provide modular tools for parsing, analysing and transforming NMODL

  • Provide easy to use, high level Python API

  • Generate optimised code for modern compute architectures including CPUs, GPUs

  • Flexibility to implement new simulator backends

  • Support for full NMODL specification

About NMODL

Simulators like NEURON use NMODL as a domain specific language (DSL) to describe a wide range of membrane and intracellular submodels. Here is an example of exponential synapse specified in NMODL:

NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}
UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}
PARAMETER {
    tau = 0.1 (ms) <1e-9,1e9>
    e = 0 (mV)
}
ASSIGNED {
    v (mV)
    i (nA)
}
STATE {
    g (uS)
}
INITIAL {
    g = 0
}
BREAKPOINT {
    SOLVE state METHOD cnexp
    i = g*(v - e)
}
DERIVATIVE state {
    g' = -g/tau
}
NET_RECEIVE(weight (uS)) {
    g = g + weight
}

Installation

See INSTALL.rst for detailed instructions to build the NMODL from source.

Try NMODL with Docker

To quickly test the NMODL Framework’s analysis capabilities we provide a docker image, which includes the NMODL Framework python library and a fully functional Jupyter notebook environment. After installing docker and docker-compose you can pull and run the NMODL image from your terminal.

To try Python interface directly from CLI, you can run docker image as:

docker run -it --entrypoint=/bin/sh bluebrain/nmodl

And try NMODL Python API discussed later in this README as:

$ python3
Python 3.6.8 (default, Apr  8 2019, 18:17:52)
>>> from nmodl import dsl
>>> import os
>>> examples = dsl.list_examples()
>>> nmodl_string = dsl.load_example(examples[-1])
...

To try Jupyter notebooks you can download docker compose file and run it as:

wget "https://raw.githubusercontent.com/BlueBrain/nmodl/master/docker/docker-compose.yml"
DUID=$(id -u) DGID=$(id -g) HOSTNAME=$(hostname) docker-compose up

If all goes well you should see at the end status messages similar to these:

[I 09:49:53.923 NotebookApp] The Jupyter Notebook is running at:
[I 09:49:53.923 NotebookApp] http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935
[I 09:49:53.923 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
    To access the notebook, open this file in a browser:
        file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
    Or copy and paste one of these URLs:
        http://(4c8edabe52e1 or 127.0.0.1):8888/?token=a7902983bad430a11935

Based on the example above you should then open your browser and navigate to the URL http://127.0.0.1:8888/?token=a7902983bad430a11935.

You can open and run all example notebooks provided in the examples folder. You can also create new notebooks in my_notebooks, which will be stored in a subfolder notebooks at your current working directory.

Using the Python API

Once the NMODL Framework is installed, you can use the Python parsing API to load NMOD file as:

from nmodl import dsl

examples = dsl.list_examples()
nmodl_string = dsl.load_example(examples[-1])
driver = dsl.NmodlDriver()
modast = driver.parse_string(nmodl_string)

The parse_file API returns Abstract Syntax Tree (AST) representation of input NMODL file. One can look at the AST by converting to JSON form as:

>>> print (dsl.to_json(modast))
{
  "Program": [
    {
      "NeuronBlock": [
        {
          "StatementBlock": [
            {
              "Suffix": [
                {
                  "Name": [
                    {
                      "String": [
                        {
                          "name": "POINT_PROCESS"
                        }
                    ...

Every key in the JSON form represent a node in the AST. You can also use visualization API to look at the details of AST as:

from nmodl import ast
ast.view(modast)

which will open AST view in web browser:

ast_viz

Vizualisation of the AST in the NMODL Framework

The central Program node represents the whole MOD file and each of it’s children represent the block in the input NMODL file. Note that this requires X-forwarding if you are using the Docker image.

Once the AST is created, one can use exisiting visitors to perform various analysis/optimisations. One can also easily write his own custom visitor using Python Visitor API. See Python API tutorial for details.

The NMODL Framework also allows us to transform the AST representation back to NMODL form as:

>>> print (dsl.to_nmodl(modast))
NEURON {
    POINT_PROCESS ExpSyn
    RANGE tau, e, i
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (uS) = (microsiemens)
}

PARAMETER {
    tau = 0.1 (ms) <1e-09,1000000000>
    e = 0 (mV)
}
...

High Level Analysis and Code Generation

The NMODL Framework provides rich model introspection and analysis capabilities using various visitors. Here is an example of theoretical performance characterisation of channels and synapses from rat neocortical column microcircuit published in 2015:

nmodl-perf-stats

Performance results of the NMODL Framework

To understand how you can write your own introspection and analysis tool, see this tutorial.

Once analysis and optimization passes are performed, the NMODL Framework can generate optimised code for modern compute architectures including CPUs (Intel, AMD, ARM) and GPUs (NVIDIA, AMD) platforms. For example, C++, OpenACC and OpenMP backends are implemented and one can choose these backends on command line as:

$ nmodl expsyn.mod sympy --analytic

To know more about code generation backends, see here. NMODL Framework provides number of options (for code generation, optimization passes and ODE solver) which can be listed as:

$ nmodl -H
NMODL : Source-to-Source Code Generation Framework [version]
Usage: /path/<>/nmodl [OPTIONS] file... [SUBCOMMAND]

Positionals:
  file TEXT:FILE ... REQUIRED           One or more MOD files to process

Options:
  -h,--help                             Print this help message and exit
  -H,--help-all                         Print this help message including all sub-commands
  --verbose=info                        Verbose logger output (trace, debug, info, warning, error, critical, off)
  -o,--output TEXT=.                    Directory for backend code output
  --scratch TEXT=tmp                    Directory for intermediate code output
  --units TEXT=/path/<>/nrnunits.lib
                                        Directory of units lib file

Subcommands:
host
  HOST/CPU code backends
  Options:
    --c                                   C/C++ backend (true)

acc
  Accelerator code backends
  Options:
    --oacc                                C/C++ backend with OpenACC (false)

sympy
  SymPy based analysis and optimizations
  Options:
    --analytic                            Solve ODEs using SymPy analytic integration (false)
    --pade                                Pade approximation in SymPy analytic integration (false)
    --cse                                 CSE (Common Subexpression Elimination) in SymPy analytic integration (false)
    --conductance                         Add CONDUCTANCE keyword in BREAKPOINT (false)

passes
  Analyse/Optimization passes
  Options:
    --inline                              Perform inlining at NMODL level (false)
    --unroll                              Perform loop unroll at NMODL level (false)
    --const-folding                       Perform constant folding at NMODL level (false)
    --localize                            Convert RANGE variables to LOCAL (false)
    --global-to-range                     Convert GLOBAL variables to RANGE (false)
    --localize-verbatim                   Convert RANGE variables to LOCAL even if verbatim block exist (false)
    --local-rename                        Rename LOCAL variable if variable of same name exist in global scope (false)
    --verbatim-inline                     Inline even if verbatim block exist (false)
    --verbatim-rename                     Rename variables in verbatim block (true)
    --json-ast                            Write AST to JSON file (false)
    --nmodl-ast                           Write AST to NMODL file (false)
    --json-perf                           Write performance statistics to JSON file (false)
    --show-symtab                         Write symbol table to stdout (false)

codegen
  Code generation options
  Options:
    --layout TEXT:{aos,soa}=soa           Memory layout for code generation
    --datatype TEXT:{float,double}=soa    Data type for floating point variables
    --force                               Force code generation even if there is any incompatibility
    --only-check-compatibility            Check compatibility and return without generating code
    --opt-ionvar-copy                     Optimize copies of ion variables (false)

Documentation

We are working on user documentation, you can find current drafts of :

Citation

If you would like to know more about the the NMODL Framework, see the following paper:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Blanco Alonso, James King, Michael Hines, and Felix Schürmann. 2020. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Computational Science – ICCS 2020, Springer, Cham, 45–58. DOI: 10.1007/978-3-030-50371-0_4

Some additional details are covered in the pre-print:

  • Pramod Kumbhar, Omar Awile, Liam Keegan, Jorge Alonso, James King, Michael Hines and Felix Schürmann. 2019. An optimizing multi-platform source-to-source compiler framework for the NEURON MODeling Language. In Eprint : arXiv:1905.02241

Support / Contribuition

If you see any issue, feel free to raise a ticket. If you would like to improve this framework, see open issues and contribution guidelines.

Examples / Benchmarks

The benchmarks used to test the performance and parsing capabilities of NMODL Framework are currently being migrated to GitHub. These benchmarks will be published soon in following repositories:

Funding & Acknowledgment

The development of this software was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. In addition, the development was supported by funding from the National Institutes of Health (NIH) under the Grant Number R01NS11613 (Yale University) and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907 (Human Brain Project SGA2).

Copyright © 2017-2024 Blue Brain Project, EPFL

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

nmodl_nightly-0.6.387-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.387-cp312-cp312-macosx_10_15_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

nmodl_nightly-0.6.387-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.387-cp311-cp311-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

nmodl_nightly-0.6.387-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.387-cp310-cp310-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

nmodl_nightly-0.6.387-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

nmodl_nightly-0.6.387-cp39-cp39-macosx_10_15_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

File details

Details for the file nmodl_nightly-0.6.387-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7e07f6f84bccddeb88f18f808e329226e8b17e5b390d0b0c5162b7f87194efce
MD5 68cda27933f8b052d8e69b9262f00371
BLAKE2b-256 7f398fd5048d606d6ce576a0136c14da2bf0b8cb3afc490da512e969792b3b4d

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 05aa825f559786116269e762d524998c85c2264ad4a163200488a4d449497492
MD5 0a3affe5cc614d74e0cda54ff220b3f1
BLAKE2b-256 3acb8c532429264a143402b3e69a1dfba3707c35a01ff92cb027a66f0ec36f8a

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 143752bee2ae626edd19ca72d08312ba2558f81bcbaf0dbf0a9be6ffeb8d78ec
MD5 d65b176acc9cb91d7a254f2e327f8a30
BLAKE2b-256 9c0af1fc196caf3024c715fc34b0cc4eaa647832a78e614848fc6a974d8c59cc

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 d68e48ef2b82ab644137abed0858ad07587b428e52247ff7d94e9f60219036db
MD5 bb6131eb61b5ef5769174d3eac5c5a9d
BLAKE2b-256 fa9d41617f781b77a7f6047a9efeaffeb9be5f5cfb72c0029f717c9b6ecce391

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6dd31cd02f63db41689c4507b0d31a342b9f320ea2a09817796a6be40108a85
MD5 645b99037c47d4ad43f7a0c985e3b5ef
BLAKE2b-256 d7b8f57ab30120f5c3846ee34dc1ecefb069ee221d1f654436060b17ec42e433

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 68cdff53939c662a3584f99928c85ee223ce0a24ca5ffdfee7b1f3ff01fea9cc
MD5 ee370108763244931d7e2d8ec0f25b06
BLAKE2b-256 c95b25da8b4610925ae70efd80c9759c5904f5b6e311963588e3077b62db2c01

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9440c236170ae37c7a04d3c31f12c5452167c450c43141f3396143f55979088
MD5 c1a1b92468f631c8e838e919e3736a9d
BLAKE2b-256 1441dd9e15359a668b5bae013941d774073138adc74d546fb1c3121f24d59e44

See more details on using hashes here.

File details

Details for the file nmodl_nightly-0.6.387-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for nmodl_nightly-0.6.387-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 33c3790a7df572beb752bbb247c435e7482441e9bb109da83c2401e1c1f3b24f
MD5 e5b92187b882bc0ccbf9c75ab1a2a62a
BLAKE2b-256 1ef82490fe34b5ab84d1795729472b23046ec23c5a886595be563cb6f52a2dd9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page