Skip to main content

A framework for discrete-time Markov chains analysis.

Project description

PyDTMC is a full-featured, lightweight library for discrete-time Markov chains analysis. It provides classes and functions for creating, manipulating, simulating and visualizing markovian stochastic processes.

Status: Build Docs Coverage
Info: License Lines Size
PyPI: Version Python Wheel Downloads
Conda: Version Python Platforms Downloads

Requirements

The Python environment must include the following packages:

The package Sphinx is required for building the package documentation. The package pytest is required for performing unit tests. For a better user experience, it's recommended to install Graphviz and pydot before using the plot_graph function.

Installation & Upgrade

PyPI:

$ pip install PyDTMC
$ pip install --upgrade PyDTMC

Git:

$ pip install https://github.com/TommasoBelluzzo/PyDTMC/tarball/master
$ pip install --upgrade https://github.com/TommasoBelluzzo/PyDTMC/tarball/master

$ pip install git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC
$ pip install --upgrade git+https://github.com/TommasoBelluzzo/PyDTMC.git#egg=PyDTMC

Conda:

$ conda install -c conda-forge pydtmc
$ conda update -c conda-forge pydtmc

$ conda install -c tommasobelluzzo pydtmc
$ conda update -c tommasobelluzzo pydtmc

Usage

The core element of the library is the MarkovChain class, which can be instantiated as follows:

>>> p = [[0.2, 0.7, 0.0, 0.1], [0.0, 0.6, 0.3, 0.1], [0.0, 0.0, 1.0, 0.0], [0.5, 0.0, 0.5, 0.0]]
>>> mc = MarkovChain(p, ['A', 'B', 'C', 'D'])
>>> print(mc)

DISCRETE-TIME MARKOV CHAIN
 SIZE:           4
 RANK:           4
 CLASSES:        2
  > RECURRENT:   1
  > TRANSIENT:   1
 ERGODIC:        NO
  > APERIODIC:   YES
  > IRREDUCIBLE: NO
 ABSORBING:      YES
 REGULAR:        NO
 REVERSIBLE:     NO

Below a few examples of MarkovChain properties:

>>> print(mc.is_ergodic)
False

>>> print(mc.recurrent_states)
['C']

>>> print(mc.transient_states)
['A', 'B', 'D']

>>> print(mc.steady_states)
[array([0.0, 0.0, 1.0, 0.0])]

>>> print(mc.is_absorbing)
True

>>> print(mc.fundamental_matrix)
[[1.50943396 2.64150943 0.41509434]
 [0.18867925 2.83018868 0.30188679]
 [0.75471698 1.32075472 1.20754717]]
 
>>> print(mc.kemeny_constant)
5.547169811320755

>>> print(mc.entropy_rate)
0.0

Below a few examples of MarkovChain methods:

>>> print(mc.absorption_probabilities())
[1.0 1.0 1.0]

>>> print(mc.expected_rewards(10, [2, -3, 8, -7]))
[-2.76071635, -12.01665113, 23.23460025, -8.45723276]

>>> print(mc.expected_transitions(2))
[[0.085, 0.2975, 0.0,    0.0425]
 [0.0,   0.345,  0.1725, 0.0575]
 [0.0,   0.0,    0.7,    0.0   ]
 [0.15,  0.0,    0.15,   0.0   ]]

>>> print(mc.first_passage_probabilities(5, 3))
[[0.5, 0.0,    0.5,    0.0   ]
 [0.0, 0.35,   0.0,    0.05  ]
 [0.0, 0.07,   0.13,   0.045 ]
 [0.0, 0.0315, 0.1065, 0.03  ]
 [0.0, 0.0098, 0.0761, 0.0186]]
 
>>> print(mc.hitting_probabilities([0, 1]))
[1.0, 1.0, 0.0, 0.5]
 
>>> print(mc.mean_absorption_times())
[4.56603774, 3.32075472, 3.28301887]

>>> print(mc.mean_number_visits())
[[0.50943396, 2.64150943, inf, 0.41509434]
 [0.18867925, 1.83018868, inf, 0.30188679]
 [0.0,        0.0,        inf, 0.0       ]
 [0.75471698, 1.32075472, inf, 0.20754717]]
 
>>> print(mc.walk(10, seed=32))
['D', 'A', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C']
>>> walk = ["A"]
>>> for _ in range(10):
...     current_state = walk[-1]
...     next_state = mc.next_state(current_state, seed=32)
...     print(f'{current_state} -> {next_state}')
...     walk.append(next_state)
A -> B
B -> C
C -> C
C -> C
C -> C
C -> C
C -> C
C -> C
C -> C
C -> C

Plotting functions can provide a visual representation of MarkovChain instances; in order to display the output of plots immediately, the interactive mode of Matplotlib must be turned on:

>>> plot_eigenvalues(mc)

Eigenplot

>>> plot_graph(mc)

Graphplot

>>> plot_walk(mc, 10, 'sequence')

Walkplot

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDTMC-6.5.0.tar.gz (77.8 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

PyDTMC-6.5.0-py3-none-any.whl (47.0 kB view details)

Uploaded Python 3

File details

Details for the file PyDTMC-6.5.0.tar.gz.

File metadata

  • Download URL: PyDTMC-6.5.0.tar.gz
  • Upload date:
  • Size: 77.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for PyDTMC-6.5.0.tar.gz
Algorithm Hash digest
SHA256 33838f14faac69d7ba20482099ac4f98dd4662a7389425eb64119cdde8e5c3c7
MD5 375592b0c65ee6372ed1f28ddf0b000c
BLAKE2b-256 315d25b544c8a52242736f48e0a5be6cc8e01c92a31510e6cac9b3d7b35663bd

See more details on using hashes here.

File details

Details for the file PyDTMC-6.5.0-py3-none-any.whl.

File metadata

  • Download URL: PyDTMC-6.5.0-py3-none-any.whl
  • Upload date:
  • Size: 47.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.6.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.2 CPython/3.9.5

File hashes

Hashes for PyDTMC-6.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 8206c6b456f73ed91572957b98442abeae6532a0698b0a7a91f1daa432f479d1
MD5 03c3640b07e02556909ce4eaf0970649
BLAKE2b-256 a48988e4d1691a933016c169947637dded1fff72f9808f873d2fae29b716b462

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page