Skip to main content

PyMICE - a Python® library for mice behavioural data analysis

Project description

https://badge.fury.io/py/PyMICE.svg https://travis-ci.org/Neuroinflab/PyMICE.svg?branch=master

PyMICE is a Python® library for mice behavioural data analysis.

The library can be used for loading and analysing of data obtained from IntelliCage™ system in an intuitive way in Python programming language.

The library provides user with an object oriented application programming interface (API) and a data abstraction layer. It also comes with auxiliary tools supporting development of analysis workflows, like data validators and a tool for workflow configuration.

We ask that PyMICE resource identifier (RRID:nlx_158570) is provided in any published research making use of PyMICE.

For more details please see The project website.

Authors

  • The library

    • Jakub Kowalski

    • Szymon Łęski

  • Tutorial data

    • Alicja Puścian

Acknowledgement

JK and SŁ supported by Symfonia NCN grant: UMO-2013/08/W/NZ4/00691.

AP supported by a grant from Switzerland through the Swiss Contribution to the enlarged European Union (PSPB-210/2010 to Ewelina Knapska and Hans-Peter Lipp).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyMICE-1.0.0.tar.gz (5.0 MB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

PyMICE-1.0.0-cp35-none-win32.whl (4.6 MB view details)

Uploaded CPython 3.5Windows x86

PyMICE-1.0.0-cp35-cp35m-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.5mWindows x86-64

PyMICE-1.0.0-cp34-none-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.4Windows x86-64

PyMICE-1.0.0-cp34-none-win32.whl (4.6 MB view details)

Uploaded CPython 3.4Windows x86

PyMICE-1.0.0-cp33-none-win_amd64.whl (4.6 MB view details)

Uploaded CPython 3.3Windows x86-64

PyMICE-1.0.0-cp33-none-win32.whl (4.6 MB view details)

Uploaded CPython 3.3Windows x86

PyMICE-1.0.0-cp27-none-win_amd64.whl (4.6 MB view details)

Uploaded CPython 2.7Windows x86-64

PyMICE-1.0.0-cp27-none-win32.whl (4.6 MB view details)

Uploaded CPython 2.7Windows x86

File details

Details for the file PyMICE-1.0.0.tar.gz.

File metadata

  • Download URL: PyMICE-1.0.0.tar.gz
  • Upload date:
  • Size: 5.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for PyMICE-1.0.0.tar.gz
Algorithm Hash digest
SHA256 ff319678809bf1d81f4addd9c2631a9a01b8a89de83e01a67dc23606ff44225f
MD5 5d781e23e85a8d0d2f03126dce82a973
BLAKE2b-256 40853614fe591f38377876c828a06e66e5ca6758154f6a3f3077957d199f77e8

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp35-none-win32.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp35-none-win32.whl
Algorithm Hash digest
SHA256 b056f9e77c3103fda5eea7988e0c6d0f253c1051fbed09282ffb1ca446ba5914
MD5 cab8344c78e9cc7ce067c2e57e5b7a62
BLAKE2b-256 626a5c73a9d64c25fba61f01c71eda55af9779d04cf84efc28bda0a1179a3e83

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp35-cp35m-win_amd64.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 a98c8f20266b87fc3640f11eedc4b04753ecf688d9c0410da5ae5914a8a70e3e
MD5 45e8cf15391163f927675f0ebb1ed39d
BLAKE2b-256 be6ebe5cc53070bcbbcc705b80d6fe207c139435003a7786cb74d849bc7e6733

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp34-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp34-none-win_amd64.whl
Algorithm Hash digest
SHA256 4e3ec97ddb599881922f3376d895dcf7d08a587501fc9a5898908770bca3dae1
MD5 40320dcc63a71f563a9fe6ba77102eb9
BLAKE2b-256 841a4ce5bd7a576e5115e42dd41054ca9e21ece50c335ce4a5e48f7155c84feb

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp34-none-win32.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp34-none-win32.whl
Algorithm Hash digest
SHA256 026be7dcf4495d3a7f35c1e5759454a49603ee17981564faa5c6fbe43d637541
MD5 34ce0f78fdc887237a226196306d0100
BLAKE2b-256 b45f796185e6950806fbc51e34ac7b1d555b095c0c8185b3646029bcb5f6527f

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp33-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp33-none-win_amd64.whl
Algorithm Hash digest
SHA256 8040aea3ab42590ffd1f1b0e5db5688704f10f9113e2d4c75fca70b64dfbc043
MD5 1cb83698d529fdb264635306c833a8cf
BLAKE2b-256 f0bfff4c12d23ac6a8f59b0e80f03d6f04836361dae7e7bd4595d4a0fc95c80e

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp33-none-win32.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp33-none-win32.whl
Algorithm Hash digest
SHA256 ab93b66d5012af14f707f9f282c660b040a84653e3d843fbad57332a05020261
MD5 edd972aa9f5117496ba40b963539f6ce
BLAKE2b-256 4839788553b924b98b4ead848c7dab8b24f09ea896f4aaceb6bde0e48ab5b2da

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp27-none-win_amd64.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp27-none-win_amd64.whl
Algorithm Hash digest
SHA256 e5e6eee1d2b171b187665f6d4f4f5219d979268984ff092873e267959cad89f1
MD5 8bba61fc8c0f6239e2ab1408032529a1
BLAKE2b-256 1ae03838197c5d239d4106c60416418dd674cb7c848982284404ffee08228596

See more details on using hashes here.

File details

Details for the file PyMICE-1.0.0-cp27-none-win32.whl.

File metadata

File hashes

Hashes for PyMICE-1.0.0-cp27-none-win32.whl
Algorithm Hash digest
SHA256 8ab767e5abaabe04615915e0a5c46cd53118f19f58c8ff0f73bcd3c9074637e7
MD5 6d73c84f9b231fff589d02d386c3cf45
BLAKE2b-256 6868e1f776cba219ce882189909bde6f6916c94d8a0fa4393e913c4559aa0d0c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page