Skip to main content

Generator of random mandalas.

Project description

Random Mandala Python package

Anton Antonov
Python-packages at GitHub/antononcube
November 2021

Introduction

This Python package implements the function random_mandala that generates plots (and images) of random mandalas.

The design, implementation strategy, and unit tests closely resemble the Wolfram Repository Function (WFR) RandomMandala, [AAf1].

(Another, very similar function at WFR is RandomScribble, [AAf2].)

The mandalas made by random_mandala are generated through rotational symmetry of a “seed segment”. The Bezier mandala seeds are created using the Python package bezier, [DHp1].

For detailed descriptions of Machine Learning studies that use collections of random mandalas see the articles [AA1, AA2].


Installation

To install from GitHub use the shell command:

python3 -m pip install git+https://github.com/antononcube/Python-packages.git#egg=RandomMandala\&subdirectory=RandomMandala

To install from pypi.org:

python3 -m pip install RandomMandala

Details and arguments

  • The mandalas made by random_mandala are generated through rotational symmetry of a “seed segment”.

  • The function random_mandala returns matplotlib figures (objects of type matplotlib.figure.Figure)

  • The function random_mandala can be given arguments of the creation function matplotlib.pyplot.figure.

  • The matplotlib figures produced by random_mandala can be converted to PIL images with the package function figure_to_image.

  • If n_rows and n_columns are both None then a matplotlib figure object with one axes object is returned.

  • There are two modes of making random mandalas: (i) single-mandala mode and (ii) multi-mandala mode. The multi-mandala mode is activated by giving the radius argument a list of positive numbers.

  • If the argument radius is a list of positive numbers, then a "multi-mandala" is created with the mandalas corresponding to each number in the radius list being overlain.

  • Here are brief descriptions of the arguments:

    • n_rows: Number of rows in the result figure.

    • n_columns: Number of columns in the result figure.

    • radius: Radius for the mandalas, a number or a list of numbers. If a list of numbers then the mandalas are overlain.

    • rotational_symmetry_order: Number of copies of the seed segment that comprise the mandala.

    • connecting_function: Connecting function, one of "line", "fill", "bezier", "bezier_fill", "random", or None. If 'random' or None a random choice of the rest of values is made.

    • number_of_elements: Controls how may graphics elements are in the seed segment.

    • symmetric_seed: Specifies should the seed segment be symmetric or not. If 'random' of None random choice between True and False is made.

    • face_color: Face (fill) color.

    • edge_color: Edge (line) color.


Setup

Load the package RandomMandala, matplotlib, and PIL:

from RandomMandala import random_mandala, figure_to_image
import matplotlib
import matplotlib.pyplot as plt
from PIL import Image, ImageOps
from mpl_toolkits.axes_grid1 import ImageGrid
import random

Examples

Here we generate a random mandala:

random.seed(99)
fig = random_mandala()

png

Here we generate a figure with 12 (3x4) random mandalas:

random.seed(33)
fig2 = random_mandala(n_rows=3, n_columns=4, figsize=(6,6))
fig2.tight_layout()
plt.show()

png


Arguments details

n_rows, n_columns

The arguments n_rows and n_columns specify the number of rows and columns respectively in the result figure object; n_rows * n_columns mandalas are generated:

random.seed(22)
fig=random_mandala(n_rows=1, n_columns=3)

png

radius

In single-mandala mode the argument radius specifies the radius of the seed segment and the mandala:

fig = matplotlib.pyplot.figure(figsize=(8, 4), dpi=120)
k = 1
for r in [5, 10, 15, 20]:
    random.seed(2)
    fig = random_mandala(connecting_function="line", 
                         radius=r,
                         figure = fig,
                         location = (1, 4, k))
    ax = fig.axes[-1]
    ax.set_title("radius:" + str(r))
    ax.axis("on")
    k = k + 1
plt.show()
plt.close(fig)

png

If the value given to radius is a list of positive numbers then multi-mandala mode is used. If radius=[r[0],...,r[k]], then for each r[i] is made a mandala with radius r[i] and the mandalas are drawn upon each other according to their radii order:

random.seed(99)
fig3=random_mandala(radius=[8,5,3], 
                    face_color=["blue", "green", 'red'],
                    connecting_function="fill")                

png

Remark: The code above uses different colors for the different radii.

rotational_symmetry_order

The argument rotational_symmetry_order specifies how many copies of the seed segment comprise the mandala:

fig = matplotlib.pyplot.figure(num=2322, figsize=(6, 12), dpi=120)
k = 1
for rso in [2, 3, 4, 6]:
    random.seed(122)
    fig = random_mandala(connecting_function="fill", 
                         symmetric_seed=True,
                         rotational_symmetry_order=rso,
                         figure = fig,
                         location = (1, 4, k))
    ax = fig.axes[-1]
    ax.set_title("order:" + str(rso))
    k = k + 1
plt.show()
plt.close(fig)

png

symmetric_seed

The argument symmetric_seed specifies should the seed segment be symmetric or not:

fig = matplotlib.pyplot.figure(num=2322, figsize=(4, 4), dpi=120)
k = 1
for ssd in [True, False]:
    random.seed(2)
    fig = random_mandala(connecting_function="fill", 
                         symmetric_seed=ssd,
                         figure = fig,
                         location = (1, 2, k))
    ax = fig.axes[-1]
    ax.set_title(str(ssd))
    k = k + 1
plt.show()
plt.close(fig)

png


Applications

Generate a collection of images

In certain Machine Learning (ML) studies it can be useful to be able to generate large enough collections of (random) images.

In the code block below we:

  • Generate 64 random mandala plots
  • Convert them into PIL images using the package function figure_to_image
  • Invert and binarize the images
  • Plot the images in an image grid
# A list to accumulate random mandala images
mandala_images = []

# Generation loop
random.seed(765)
for i in range(64):
    
    # Generate one random mandala figure
    fig2 = random_mandala(n_rows=None,
                          n_columns=None,
                          radius=[8, 6, 3],
                          rotational_symmetry_order=6,
                          symmetric_seed=True,
                          number_of_elements=4,
                          connecting_function='random',
                          face_color='0.2')
    fig2.tight_layout()
    
    # Convert the figure into an image and add it to the list
    mandala_images = mandala_images + [figure_to_image(fig2)]
    
    # Close figure to save memoru
    plt.close(fig2)

# Invert image colors    
mandala_images2 = [ImageOps.invert(img) for img in mandala_images]

# Binarize images
mandala_images3 = [im.convert('1') for im in mandala_images2]

# Make a grid of images and display it
fig3 = plt.figure(figsize=(14., 14.))
grid = ImageGrid(fig3, 111,
                 nrows_ncols=(8, 8),
                 axes_pad=0.02,
                 )

for ax, img in zip(grid, mandala_images3):
    ax.imshow(img)
    ax.set(xticks=[], yticks=[])

plt.show()

png


Neat examples

A table of random mandalas

random.seed(124)
fig=random_mandala(n_rows=6, n_columns=6, figsize=(10,10), dpi=240)

png

A table of open colorized mandalas

fig = matplotlib.pyplot.figure(figsize=(10, 10), dpi=120)
k = 1
random.seed(883)
for rso in [2 * random.random() + 2 for _ in range(36)]:
    random.seed(33)
    fig = random_mandala(connecting_function="bezier_fill",
                         radius=3,
                         face_color="darkblue",
                         rotational_symmetry_order=rso,
                         number_of_elements=8,
                         figure=fig,
                         location=(6, 6, k))
    ax = fig.axes[-1]
    ax.set_axis_off()
    k = k + 1

plt.show()
plt.close(fig)

png


References

Articles

[AA1] Anton Antonov, "Comparison of dimension reduction algorithms over mandala images generation", (2017), MathematicaForPrediction at WordPress.

[AA2] Anton Antonov, "Generation of Random Bethlehem Stars", (2020), MathematicaForPrediction at WordPress.

Functions

[AAf1] Anton Antonov, RandomMandala, (2019), Wolfram Function Repository.

[AAf2] Anton Antonov, RandomScribble, (2020), Wolfram Function Repository.

Packages

[DHp1] Daniel Hermes, bezier Python package, (2016), PyPi.org.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

RandomMandala-0.5.1.tar.gz (15.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

RandomMandala-0.5.1-py3-none-any.whl (13.4 kB view details)

Uploaded Python 3

File details

Details for the file RandomMandala-0.5.1.tar.gz.

File metadata

  • Download URL: RandomMandala-0.5.1.tar.gz
  • Upload date:
  • Size: 15.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for RandomMandala-0.5.1.tar.gz
Algorithm Hash digest
SHA256 619c4d9ea137322136cde1b0f32844ac49711f318ed0aa96eaccd6b80ca91e93
MD5 164dcde03cbc330d106d481b24fffaa6
BLAKE2b-256 6f84093f27e3c1edc7f8af9405b10f3974be91aef39346f90ab894f96d373430

See more details on using hashes here.

File details

Details for the file RandomMandala-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: RandomMandala-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 13.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for RandomMandala-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 84fa8b02241ec79c3b9765cd79a46c813275fed2c86e080e4c7fcbbbdcc56f57
MD5 c3f3aeebb6352b54eec0f39fa8a07232
BLAKE2b-256 f602fd5eda49ff8979cde885ea02b17bad71b202c2e9723db946e179e5bc52ba

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page