Skip to main content

The practitioner's time series forecasting library

Project description

Scalecast

Scalecast Logo

About

Scalecast helps you forecast time series. Here is how to initiate its main object:

from scalecast.Forecaster import Forecaster

f = Forecaster(
    y = array_of_values,
    current_dates = array_of_dates,
    future_dates=fcst_horizon_length,
    test_length = 0, # do you want to test all models? if so, on how many or what percent of observations?
    cis = False, # evaluate conformal confidence intervals for all models?
    metrics = ['rmse','mape','mae','r2'], # what metrics to evaluate over the validation/test sets?
)

Uniform ML modeling (with models from a diverse set of libraries, including scikit-learn, statsmodels, and tensorflow), reporting, and data visualizations are offered through the Forecaster and MVForecaster interfaces. Data storage and processing then becomes easy as all applicable data, predictions, and many derived metrics are contained in a few objects with much customization available through different modules. Feature requests and issue reporting are welcome! Don't forget to leave a star!⭐

Documentation

Popular Features

  1. Easy LSTM Modeling: setting up an LSTM model for time series using tensorflow is hard. Using scalecast, it's easy. Many tutorials and Kaggle notebooks that are designed for those getting to know the model use scalecast (see the aritcle).
f.set_estimator('lstm')
f.manual_forecast(
    lags=36,
    batch_size=32,
    epochs=15,
    validation_split=.2,
    activation='tanh',
    optimizer='Adam',
    learning_rate=0.001,
    lstm_layer_sizes=(100,)*3,
    dropout=(0,)*3,
)
  1. Auto lag, trend, and seasonality selection:
f.auto_Xvar_select( # iterate through different combinations of covariates
    estimator = 'lasso', # what estimator?
    alpha = .2, # estimator hyperparams?
    monitor = 'ValidationMetricValue', # what metric to monitor to make decisions?
    cross_validate = True, # cross validate
    cvkwargs = {'k':3}, # 3 folds
)
  1. Hyperparameter tuning using grid search and time series cross validation:
from scalecast import GridGenerator

GridGenerator.get_example_grids()
models = ['ridge','lasso','xgboost','lightgbm','knn']
f.tune_test_forecast(
    models,
    limit_grid_size = .2,
    feature_importance = True, # save pfi feature importance for each model?
    cross_validate = True, # cross validate? if False, using a seperate validation set that the user can specify
    rolling = True, # rolling time series cross validation?
    k = 3, # how many folds?
)
  1. Plotting results: plot test predictions, forecasts, fitted values, and more.
import matplotlib.pyplot as plt

fig, ax = plt.subplots(2,1, figsize = (12,6))
f.plot_test_set(models=models,order_by='TestSetRMSE',ax=ax[0])
f.plot(models=models,order_by='TestSetRMSE',ax=ax[1])
plt.show()
  1. Pipelines that include transformations, reverting, and backtesting:
from scalecast import GridGenerator
from scalecast.Pipeline import Transformer, Reverter, Pipeline
from scalecast.util import find_optimal_transformation, backtest_metrics

def forecaster(f):
    models = ['ridge','lasso','xgboost','lightgbm','knn']
    f.tune_test_forecast(
        models,
        limit_grid_size = .2, # randomized grid search on 20% of original grid sizes
        feature_importance = True, # save pfi feature importance for each model?
        cross_validate = True, # cross validate? if False, using a seperate validation set that the user can specify
        rolling = True, # rolling time series cross validation?
        k = 3, # how many folds?
    )

transformer, reverter = find_optimal_transformation(f) # just one of several ways to select transformations for your series

pipeline = Pipeline(
    steps = [
        ('Transform',transformer),
        ('Forecast',forecaster),
        ('Revert',reverter),
    ]
)

f = pipeline.fit_predict(f)
backtest_results = pipeline.backtest(f)
metrics = backtest_metrics(backtest_results)
  1. Model stacking: There are two ways to stack models with scalecast, with the StackingRegressor from scikit-learn or using its own stacking procedure.
from scalecast.auxmodels import auto_arima

f.set_estimator('lstm')
f.manual_forecast(
    lags=36,
    batch_size=32,
    epochs=15,
    validation_split=.2,
    activation='tanh',
    optimizer='Adam',
    learning_rate=0.001,
    lstm_layer_sizes=(100,)*3,
    dropout=(0,)*3,
)

f.set_estimator('prophet')
f.manual_forecast()

auto_arima(f)

# stack previously evaluated models
f.add_signals(['lstm','prophet','arima'])
f.set_estimator('catboost')
f.manual_forecast()
  1. Multivariate modeling and multivariate pipelines:
from scalecast.MVForecaster import MVForecaster
from scalecast.Pipeline import MVPipeline
from scalecast.util import find_optimal_transformation, backtest_metrics
from scalecast import GridGenerator

GridGenerator.get_mv_grids()

def mvforecaster(mvf):
    models = ['ridge','lasso','xgboost','lightgbm','knn']
    mvf.tune_test_forecast(
        models,
        limit_grid_size = .2, # randomized grid search on 20% of original grid sizes
        cross_validate = True, # cross validate? if False, using a seperate validation set that the user can specify
        rolling = True, # rolling time series cross validation?
        k = 3, # how many folds?
    )

mvf = MVForecaster(f1,f2,f3) # can take N Forecaster objects

transformer1, reverter1 = find_optimal_transformation(f1)
transformer2, reverter2 = find_optimal_transformation(f2)
transformer3, reverter3 = find_optimal_transformation(f3)

pipeline = MVPipeline(
    steps = [
        ('Transform',[transformer1,transformer2,transformer3]),
        ('Forecast',mvforecaster),
        ('Revert',[reverter1,reverter2,reverter3])
    ]
)

f1, f2, f3 = pipeline.fit_predict(f1, f2, f3)
backtest_results = pipeline.backtest(f1, f2, f3)
metrics = backtest_metrics(backtest_results)
  1. Transfer Learning (new with 0.19.0): Train a model in one Forecaster object and use that model to make predictions on the data in a separate Forecaster object.
f = Forecaster(...)
f.auto_Xvar_select()
f.set_estimator('xgboost')
f.cross_validate()
f.auto_forecast()

f_new = Forecaster(...) # different series than f
f_new = infer_apply_Xvar_selection(infer_from=f,apply_to=f_new)
f_new.transfer_predict(transfer_from=f,model='xgboost') # transfers the xgboost model from f to f_new

Installation

Required Installations

  • UV recommended
  • Only the base package is needed to get started:
    • pip install --upgrade scalecast
    • uv pip install --upgrade scalecast (recommended)

Optional Installations

  • shap: feature importance (known issue with Python 3.11+)
  • tf: tensorflow for rnn/lstm models (for MAC, you may need to run uv pip install tensorflow-macos tensorflow-metal)
  • darts: theta
  • greykite: silverkite model
  • prophet: prophet model
  • tbats: tbats

Install these by using

uv pip install scalecast[list_optional_dependencies]

For example, install tensorflow and darts using:

uv pip install scalecast[tf,darts]

Please note that the optional dependencies may not be tested before new releases.

Papers that use scalecast

Udemy Course

Scalecast: Machine Learning & Deep Learning

Blog posts and notebooks

Forecasting with Different Model Types

Transforming and Reverting

Confidence Intervals

Dynamic Validation

Model Input Selection

Scaled Forecasting on Many Series

Transfer Learning

Anomaly Detection

Contributing

How to cite scalecast

@misc{scalecast,
  title = {{scalecast}},
  author = {Michael Keith},
  year = {2024},
  version = {<your version>},
  url = {https://scalecast.readthedocs.io/en/latest/},
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scalecast-0.20.0.tar.gz (119.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

scalecast-0.20.0-py3-none-any.whl (122.7 kB view details)

Uploaded Python 3

File details

Details for the file scalecast-0.20.0.tar.gz.

File metadata

  • Download URL: scalecast-0.20.0.tar.gz
  • Upload date:
  • Size: 119.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for scalecast-0.20.0.tar.gz
Algorithm Hash digest
SHA256 e4b00e1f00ab34946e4c2407c0e01d337ed5296cf5757ac7e2cd94fd17371919
MD5 0acb7ed69b667d5e56def349c89c6eb9
BLAKE2b-256 bc796eae9cab0b6390da80af58c575d0143a8170595cef3fbf7830ec8d866f01

See more details on using hashes here.

File details

Details for the file scalecast-0.20.0-py3-none-any.whl.

File metadata

  • Download URL: scalecast-0.20.0-py3-none-any.whl
  • Upload date:
  • Size: 122.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.11.14

File hashes

Hashes for scalecast-0.20.0-py3-none-any.whl
Algorithm Hash digest
SHA256 b67e00349077669cc93dd3bbe07f58fa5ea1a2ebd07e1a834de55ae6cc313a4a
MD5 56894375781065a2c8751742c70431ad
BLAKE2b-256 10d4ce36bb39404eb04d5be4cf86968206a8a118e28ea7657647236b5a9c2471

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page