Mutational signatures attribution and decomposition tool
Project description
SigProfilerAssignment
SigProfilerAssignment is a new mutational attribution and decomposition tool that performs the following functions:
- Attributing a known set of mutational signatures to an individual sample or multiple samples.
- Decomposing de novo signatures to COSMIC signature database.
- Attributing COSMIC database or a custom signature database to given samples.
The tool identifies the activity of each signature in the sample and assigns the probability for each signature to cause a specific mutation type in the sample. The tool makes use of SigProfilerMatrixGenerator, SigProfilerExtractor and SigProfilerPlotting.
Installs
for installing from PyPi in new conda environment
$ pip install SigProfilerAssignment
Installing this package : git clone this repo or download the zip file. Unzip the contents of SigProfilerExtractor-master.zip or the zip file of a corresponding branch.
$ cd SigProfilerAssignment-master
$ pip install .
Signature Subgroups
exclude_signature_subgroups = ['remove_MMR_deficiency_signatures',
'remove_POL_deficiency_signatures',
'remove_HR_deficiency_signatures' ,
'remove_BER_deficiency_signatures',
'remove_Chemotherapy_signatures',
'remove_Immunosuppressants_signatures'
'remove_Treatment_signatures'
'remove_APOBEC_signatures',
'remove_Tobacco_signatures',
'remove_UV_signatures',
'remove_AA_signatures',
'remove_Colibactin_signatures',
'remove_Artifact_signatures',
'remove_Lymphoid_signatures']
| Signature subgroup | SBS signatures excluded | DBS signatures excluded | ID signatures excluded |
|---|---|---|---|
| MMR_deficiency_signatures | 6, 14, 15, 20, 21, 26, 44 | 7, 10 | 7 |
| POL_deficiency_signatures | 10a, 10b, 10c, 10d, 28 | 3 | - |
| HR_deficiency_signatures | 3 | - | 6 |
| BER_deficiency_signatures | 30, 36 | - | - |
| Chemotherapy_signatures | 11, 25, 31, 35, 86, 87, 90 | 5 | - |
| Immunosuppressants_signatures | 32 | - | - |
| Treatment_signatures | 11, 25, 31, 32, 35, 86, 87, 90 | 5 | - |
| APOBEC_signatures | 2, 13 | - | - |
| Tobacco_signatures | 4, 29, 92 | 2 | 3 |
| UV_signatures | 7a, 7b, 7c, 7d, 38 | 1 | 13 |
| AA_signatures | 22 | - | - |
| Colibactin_signatures | 88 | - | 18 |
| Artifact_signatures | 27, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 95 | - | - |
| Lymphoid_signatures | 9, 84, 85 | - | - |
Decompose Fit
Decomposes the De Novo Signatures into COSMIC Signatures and assigns COSMIC signatures into samples.
from SigProfilerAssignment import Analyzer as Analyze
Analyze.decompose_fit(samples,
output,
signatures=signatures,
signature_database=sigs,
genome_build="GRCh37",
verbose=False,
new_signature_thresh_hold=0.8,
exclude_signature_subgroups=exclude_signature_subgroups,
exome=False)
Analysis
De Novo Fit
Attributes mutations of given Samples to input denovo signatures.
from SigProfilerAssignment import Analyzer as Analyze
Analyze.denovo_fit( samples,
output,
signatures=signatures,
signature_database=sigs,
genome_build="GRCh37",
verbose=False)
COSMIC Fit
Attributes mutations of given Samples to input COSMIC signatures. Note that penalties associated with denovo fit and COSMIC fits are different.
from SigProfilerAssignment import Analyzer as Analyze
Analyze.cosmic_fit( samples,
output,
signatures=None,
signature_database=sigs,
genome_build="GRCh37",
verbose=False,
collapse_to_SBS96=False,
make_plots=True,
exclude_signature_subgroups=exclude_signature_subgroups,
exome=False
)
Main Parameters
| Parameter | Variable Type | Parameter Description |
|---|---|---|
| samples | String | Path to input file for input_type:
input_type:
|
| output | String | Path to the output folder. |
| input_type | String | The type of input:
|
| context_type | String | Required context type if input_type is "vcf". context_type takes which context type of the input data is considered for assignment. Valid options include "96", "288", "1536", "DINUC", and "INDEL". The default value is "96". |
| signatures | String | Path to a tab delimited file that contains the signature table where the rows are mutation types and colunms are signature IDs. |
| genome_build | String | The reference genome build. List of supported genomes: "GRCh37", "GRCh38", "mm9", "mm10" and "rn6". The default value is "GRCh37". If the selected genome is not in the supported list, the default genome will be used. |
| cosmic_version | Float | Takes a positive float among 1, 2, 3, 3.1, 3.2 and 3.3. Defines the version of the COSMIC reference signatures. The default value is 3.3. |
| new_signature_thresh_hold | Float | Parameter in cosine similarity to declare a new signature. Applicable for decompose_fit only. The default value is 0.8. |
| exclude_signature_subgroups | List | Removes the signatures corresponding to specific subtypes for better fitting. The usage is given above. The default value is None. |
| exome | Boolean | Defines if the exome renormalized signatures will be used. The default value is False. |
| export_probabilities | Boolean | Defines if the probability matrix is created. The default value is True. |
| make_plots | Boolean | Toggle on and off for making and saving all plots. The default value is True. |
| verbose | Boolean | Prints statements. The default value is False. |
Examples
SPA analysis - Example for a matrix
#import modules
import SigProfilerAssignment as spa
from SigProfilerAssignment import Analyzer as Analyze
#set directories and paths to signatures and samples
dir_inp = spa.__path__[0]+'/data/Examples/'
samples = dir_inp+"Input_scenario_8/Samples.txt"
output = "output_example/"
signatures = dir_inp+"Results_scenario_8/SBS96/All_Solutions/SBS96_3_Signatures/Signatures/SBS96_S3_Signatures.txt"
sigs = "COSMIC_v3_SBS_GRCh37_noSBS84-85.txt" #Custom Signature Database
#Analysis of SP Assignment
Analyze.cosmic_fit( samples,
output,
signatures=None,
signature_database=sigs,
genome_build="GRCh37",
cosmic_version=3.3,
verbose=False,
collapse_to_SBS96=False,
make_plots=True,
exclude_signature_subgroups=None,
exome=False)
SPA analysis - Example for input vcf files
#import modules
import SigProfilerAssignment as spa
from SigProfilerAssignment import Analyzer as Analyze
import os
#set directories and paths to signatures and samples
dir_inp = os.path.join(spa.__path__[0], '/data/Examples/')
# directory of vcf files
samples = os.path.join(spa.__path__[0], '/data/tests/vcf_input/')
output = "output_example/"
signatures = os.path.join(dir_inp, \
"Results_scenario_8/SBS96/All_Solutions/SBS96_3_Signatures/Signatures/" \
+ "SBS96_S3_Signatures.txt")
sigs = "COSMIC_v3_SBS_GRCh37_noSBS84-85.txt" #Custom Signature Database
#Analysis of SP Assignment
Analyze.cosmic_fit( samples,
output,
input_type="vcf",
context_type="96",
signatures=None,
signature_database=sigs,
genome_build="GRCh37",
cosmic_version=3.3,
verbose=False,
collapse_to_SBS96=False,
make_plots=True,
exclude_signature_subgroups=None,
exome=False)
SPA analysis - Example for an input multi-sample segmentation file
#import modules
import SigProfilerAssignment as spa
from SigProfilerAssignment import Analyzer as Analyze
import os
#set directories and paths to signatures and samples
dir_inp = os.path.join(spa.__path__[0], 'data/Examples/')
# segmentation file
samples = os.path.join(spa.__path__[0], \
'/data/tests/cnv_input/all.breast.ascat.summary.sample.tsv')
output = "output_example/"
#Analysis of SP Assignment
Analyze.cosmic_fit( samples,
output,
input_type="seg:ASCAT_NGS",
context_type="CNV48",
signatures=None,
signature_database=None,
genome_build="GRCh37",
cosmic_version=3.3,
verbose=False,
collapse_to_SBS96=False,
make_plots=True,
exclude_signature_subgroups=None,
exome=False)
Copyright
This software and its documentation are copyright 2022 as a part of the SigProfiler project. The SigProfilerAssignment framework is free software and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
Contact Information
Please address any queries or bug reports to Raviteja Vangara at rvangara@health.ucsd.edu
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file SigProfilerAssignment-0.0.18.tar.gz.
File metadata
- Download URL: SigProfilerAssignment-0.0.18.tar.gz
- Upload date:
- Size: 4.6 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
26bdfe6a5536b007836c8ed32e2359be09351e0cbbe3188b4029cf86c29756ea
|
|
| MD5 |
ab7657241db7e6cecff625e8505354e6
|
|
| BLAKE2b-256 |
3076b2ac20625c7d23ebf959681df3436174a0b61be964d8c74829c42ab1b88f
|
File details
Details for the file SigProfilerAssignment-0.0.18-py3-none-any.whl.
File metadata
- Download URL: SigProfilerAssignment-0.0.18-py3-none-any.whl
- Upload date:
- Size: 6.7 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.12
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
28a19a1efa26ff1103e6711aa24151df6e3b828aeef02ed0174a4c34e6f7c6ad
|
|
| MD5 |
609d1d95bc08c69645015d5a9c6ef447
|
|
| BLAKE2b-256 |
7673c586f0e9b2bb41a67c64605f214499ca755929f4bf4092d11a28cd2982b7
|