Skip to main content

A Python tool for 3D adaptive binary space partitioning and beyond

Project description


License: MIT PyPI version Build status

Introduction

abspy is a Python tool for 3D adaptive binary space partitioning and beyond: an ambient 3D space is adaptively partitioned to form a linear cell complex with pre-detected planar primitives in a point cloud, where an adjacency graph is dynamically obtained. The tool is implemented to support compact surface reconstruction initially, but can be extrapolated to other applications as well.

Key features

  • Manipulation of planar primitives detected from point clouds
  • Linear cell complex creation with adaptive binary space partitioning (a-BSP)
  • Dynamic BSP-tree (NetworkX graph) updated locally upon insertion of primitives
  • Support of polygonal surface reconstruction from graph cuts
  • Compatible data structure with Easy3D on point clouds, primitives, cell complexes and surfaces
  • Robust Boolean spatial operations underpinned by the rational ring from SageMath's exact kernel

Installation

Install requirements

All dependencies except for SageMath can be easily installed with PyPI:

git clone https://github.com/chenzhaiyu/abspy && cd abspy
pip install -r requirements.txt

Optionally, install pyglet and pyembree for better visualisation and ray-tracing, respectively:

pip install pyglet pyembree

Install SageMath

For Linux and macOS users, the easiest is to install from conda-forge:

conda config --add channels conda-forge
conda install sage

Alternatively, you can use mamba for faster parsing and package installation:

conda config --add channels conda-forge
conda install mamba
mamba install sage

For Windows users, you may have to build SageMath from source or install all other dependencies into a pre-built SageMath environment.

Install abspy

abspy itself can be found and easily installed via PyPI:

pip install abspy

Quick start

Here is an example of loading a point cloud in VertexGroup (.vg), partitioning the ambient space into candidate convexes, creating the adjacency graph, and extracting the outer surface of the object.

import numpy as np
from abspy import VertexGroup, AdjacencyGraph, CellComplex

# load a point cloud in VertexGroup 
vertex_group = VertexGroup(filepath='points.vg')

# normalise the point cloud
vertex_group.normalise_to_centroid_and_scale()

# additional planes to append (e.g., the bounding planes)
additional_planes = [[0, 0, 1, -bounds[:, 0, 2].min()]]

# initialise CellComplex from planar primitives
cell_complex = CellComplex(vertex_group.planes, vertex_group.bounds, vertex_group.points_grouped, build_graph=True, additional_planes=additional_planes)

# refine planar primitives
cell_complex.refine_planes()

# prioritise certain planes (e.g., vertical ones)
cell_complex.prioritise_planes(prioritise_verticals=True)

# construct CellComplex 
cell_complex.construct()

# print info on the cell complex
cell_complex.print_info()

# cells inside reference mesh
cells_in_mesh = cell_complex.cells_in_mesh('tests/test_data/test_mesh_manifold.obj')

# visualise the inside cells (only if pyglet installation is found and valid indices are provided)
if len(cells_in_mesh):
    cell_complex.visualise(indices_cells=cells_in_mesh)

# build adjacency graph of the cell complex
adjacency_graph = AdjacencyGraph(cell_complex.graph)

# apply weights (e.g., SDF values provided by neural network prediction)
sdf_values = np.load('tests/test_data/test_sdf.npy')
volumes = cell_complex.volumes(multiplier=10e5)
weights_dict = adjacency_graph.to_dict(sigmoid(sdf_values * volumes))

# assign weights to n-links and st-links to the graph
adjacency_graph.assign_weights_to_n_links(cell_complex.cells, attribute='area_overlap', factor=0.001, cache_interfaces=True)
adjacency_graph.assign_weights_to_st_links(weights_dict)

# perform graph-cut to extract surface
_, _ = adjacency_graph.cut()

# save surface model to an OBJ file
adjacency_graph.save_surface_obj('surface.obj', engine='rendering')

Usage can be found at API reference. For the data structure of a .vg/.bvg file, please refer to VertexGroup.

Misc

  • Why adaptive?

Adaptive space partitioning can significantly reduce computations for cell complex creation, compared to the exhaustive counterpart. The excessive number of cells from the latter not only hinders computation but also inclines to defective surfaces on subtle structures where inaccurate labels are more likely to be assigned.

adaptive

Run the benchmark on the number of candidate cells and runtime among adaptive partitioning, exhaustive partitioning, and SageMath's hyperplane arrangements:

python misc/benchmark.py
  • How can abspy be used for surface reconstruction?

With the cell complex constructed and its adjacency maintained, surface reconstruction can be addressed by a graph cut solver that classifies each cell as being inside or outside the object. The surface exists in between adjacent cells where one is inside and the other is outside — exactly where the cut is performed. For more information, refer to Points2Poly that wraps abspy for building surface reconstruction.

adaptive

License

MIT

Citation

If you use abspy in a scientific work, please consider citing the paper:

@article{chen2021reconstructing,
  title={Reconstructing Compact Building Models from Point Clouds Using Deep Implicit Fields},
  author={Chen, Zhaiyu and Khademi, Seyran and Ledoux, Hugo and Nan, Liangliang},
  journal={arXiv preprint arXiv:2112.13142},
  year={2021}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

abspy-0.1.7.tar.gz (26.1 kB view details)

Uploaded Source

Built Distribution

abspy-0.1.7-py3-none-any.whl (23.6 kB view details)

Uploaded Python 3

File details

Details for the file abspy-0.1.7.tar.gz.

File metadata

  • Download URL: abspy-0.1.7.tar.gz
  • Upload date:
  • Size: 26.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.58.0 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for abspy-0.1.7.tar.gz
Algorithm Hash digest
SHA256 fc3e70734520f2e49ec98ef55797002080d5c1e7802ac03663768b97e99c3262
MD5 9ad81b44a658a9014e14966b0dc0c74d
BLAKE2b-256 c7024e5ee798f49dbaf42058613544cebee1f15c1393eb3fdf45c0ff4dee6318

See more details on using hashes here.

File details

Details for the file abspy-0.1.7-py3-none-any.whl.

File metadata

  • Download URL: abspy-0.1.7-py3-none-any.whl
  • Upload date:
  • Size: 23.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.58.0 importlib-metadata/4.11.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.8.12

File hashes

Hashes for abspy-0.1.7-py3-none-any.whl
Algorithm Hash digest
SHA256 dd82f927da3999de30a1902fa3bda4cf2683bbd1eeb5772c85ba491fdcd6f4d9
MD5 39546177f3a6a512c5b649c669e23f15
BLAKE2b-256 305b521d8c82213687f36b1ff87c33875c8893d3e94a5516af2581f854208a81

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page