Skip to main content

An airflow provider for anomaly detection.

Project description

Anomaly Detection with Apache Airflow

Painless anomaly detection (using PyOD) with Apache Airflow.

PyPI PyPI - Downloads GitHub GitHub Repo stars

How

How it works in a 🌰:

  1. Create and express your metrics via SQL queries (example here).
  2. Some YAML configuration fun (example here, defaults here).
  3. Receive useful alerts when metrics look anomalous (example here).

The example dag will create 4 dags for each "metric batch" (a metric batch is just the resulting table of 1 or more metrics created in step 1 above):

  • <dag_name_prefix><metric_batch_name>_ingestion<dag_name_suffix>: Ingests the metric data into a table in BigQuery.
  • <dag_name_prefix><metric_batch_name>_training<dag_name_suffix>: Uses recent metrics and preprocess.sql to train an anomaly detection model for each metric and save it to GCS.
  • <dag_name_prefix><metric_batch_name>_scoring<dag_name_suffix>: Uses latest metrics and preprocess.sql to score recent data using latest trained model.
  • <dag_name_prefix><metric_batch_name>_alerting<dag_name_suffix>: Uses recent scores and alert_status.sql to trigger an alert email if alert conditions are met.

airflow-dags-ui

Example Alert

Example output of an alert. Horizontal bar chart used to show metric values over time. Smoothed anomaly score is shown as a % and any flagged anomalies are marked with *.

In the example below you can see that the anomaly score is elevated when the metric dips and also when it spikes.

Alert Text (ascii art yay!)

🔥 [some_metric_last1h] looks anomalous (2023-01-25 16:00:00) 🔥
some_metric_last1h (2023-01-24 15:30:00 to 2023-01-25 16:00:00)
                                                                                       
t=0   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             2,742.00    72% 2023-01-25 16:00:00
t=-1  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       3,165.00  * 81% 2023-01-25 15:30:00
t=-2  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  3,448.00  * 95% 2023-01-25 15:15:00
t=-3  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   3,441.00    76% 2023-01-25 15:00:00
t=-4  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                 2,475.00    72% 2023-01-25 14:30:00
t=-5  ~~~~~~~~~~~~~~~~~~~~~~~~~~                          1,833.00    72% 2023-01-25 14:15:00
t=-6  ~~~~~~~~~~~~~~~~~~~~                                1,406.00    72% 2023-01-25 14:00:00
t=-7  ~~~~~~~~~~~~~~~~~~~                                 1,327.00  * 89% 2023-01-25 13:30:00
t=-8  ~~~~~~~~~~~~~~~~~~~                                 1,363.00    78% 2023-01-25 13:15:00
t=-9  ~~~~~~~~~~~~~~~~~~~~~~~~                            1,656.00    66% 2023-01-25 13:00:00
t=-10 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                      2,133.00    51% 2023-01-25 12:30:00
t=-11 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  2,392.00    40% 2023-01-25 12:15:00
t=-12 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                2,509.00    41% 2023-01-25 12:00:00
t=-13 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             2,729.00    42% 2023-01-25 11:30:00
t=-14 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             2,696.00    44% 2023-01-25 11:15:00
t=-15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               2,618.00    41% 2023-01-25 11:00:00
t=-16 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                  2,390.00    39% 2023-01-25 10:30:00
t=-17 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~               2,601.00    27% 2023-01-24 20:00:00
t=-18 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~           2,833.00    25% 2023-01-24 17:30:00
t=-19 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          2,910.00    28% 2023-01-24 17:15:00
t=-20 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             2,757.00    22% 2023-01-24 17:00:00
t=-21 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             2,696.00    34% 2023-01-24 16:30:00
t=-22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~              2,651.00    37% 2023-01-24 16:15:00
t=-23 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~            2,797.00    39% 2023-01-24 16:00:00
t=-24 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~             2,739.00    40% 2023-01-24 15:30:00

Below is the sql to pull the metric in question for investigation (this is included in the alert for convenience).

select *
from `metrics.metrics` m
join `metrics.metrics_scored` s
on m.metric_name = s.metric_name and m.metric_timestamp = s.metric_timestamp
where m.metric_name = 'some_metric_last1h'
order by m.metric_timestamp desc

Alert Chart

A slightly more fancy chart is also attached to alert emails. The top line graph shows the metric values over time. The bottom line graph shows the smoothed anomaly score over time along with the alert status for any flagged anomalies where the smoothed anomaly score passes the threshold.

alert-chart-example

Getting Started

Check out the example dag to get started.

Prerequisites

  • Currently only Google BiqQuery is supported as a data source. The plan is to add Snowflake next and then probably Redshift. PR's to add other data sources are very welcome (some refactoring probably needed).
  • Requirements are listed in requirements.txt.
  • You will need to have sendgrid_default connection setup in airflow to send emails. You can also use the sendgrid_api_key via environment variable if you prefer. See .example.env for more details.
  • You will need to have a google_cloud_default connection setup in airflow to pull data from bigquery. See .example.env for more details.

Installation

Install from PyPI as usual.

pip install airflow-provider-anomaly-detection

Configuration

See the example configuration files in the example dag folder. You can use a defaults.yaml or specific <metric-batch>.yaml for each metric batch if needed.

Docker

You can use the docker compose file to spin up an airflow instance with the provider installed and the example dag available. This is useful for quickly trying it out locally. It will mount the local folders (you can see this in docker-compose.yaml) into the container so you can make changes to the code or configs and see them reflected in the running airflow instance.

docker compose up -d

Anomaly Gallery

Look at some of these beautiful anomalies! (More at /anomaly_gallery/README.md)

(these are all real anomalies from various business metrics as i have been dogfooding this at work for a little while now)

Sharpe drop in metric followed by an elevated anomaly score.

sharp_drop_example

A subtle change and some "saw tooth" behaviour leading to an anomaly.

saw_tooth_example

A bump and spike example - two anomalies for one!

bump_and_spike_example

An example of a regular ETL timing delay.

etl_delay_example

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

airflow_provider_anomaly_detection-0.0.33.tar.gz (3.8 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file airflow_provider_anomaly_detection-0.0.33.tar.gz.

File metadata

File hashes

Hashes for airflow_provider_anomaly_detection-0.0.33.tar.gz
Algorithm Hash digest
SHA256 4fc71cbfde6c590ada72077a223bfe3042c446ce190e3169a3d5614cab3da779
MD5 078a22e03b899677445a363dd76e8f97
BLAKE2b-256 183ffa38d0b1a7655d4245400c2e9f865b2626fb112805442fe9860bb9ca2241

See more details on using hashes here.

File details

Details for the file airflow_provider_anomaly_detection-0.0.33-py3-none-any.whl.

File metadata

File hashes

Hashes for airflow_provider_anomaly_detection-0.0.33-py3-none-any.whl
Algorithm Hash digest
SHA256 5bb9cdd390b66e5781d0736b7807716e1ab5593b7985602e88f4a20cdaca7134
MD5 2f353d3b6e5c85489c43b5bcba7485d6
BLAKE2b-256 248ec277363c80de31957175aa78283e6ece53ed0b97976b00770bea9bab89ae

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page