Skip to main content

The Arcade Learning Environment (ALE) - a platform for AI research.

Project description

The Arcade Learning Environment Arcade Learning Environment

Python PyPI Version

The Arcade Learning Environment (ALE) is a simple framework that allows researchers and hobbyists to develop AI agents for Atari 2600 games. It is built on top of the Atari 2600 emulator Stella and separates the details of emulation from agent design. This video depicts over 50 games currently supported in the ALE.

For an overview of our goals for the ALE read The Arcade Learning Environment: An Evaluation Platform for General Agents. If you use ALE in your research, we ask that you please cite this paper in reference to the environment. See the Citing section for BibTeX entries.

Features

  • Object-oriented framework with support to add agents and games.
  • Emulation core uncoupled from rendering and sound generation modules for fast emulation with minimal library dependencies.
  • Automatic extraction of game score and end-of-game signal for more than 100 Atari 2600 games.
  • Multi-platform code (compiled and tested under macOS, Windows, and several Linux distributions).
  • Python bindings through pybind11.
  • Native support for Gymnasium, a maintained fork of OpenAI Gym.
  • C++ based vectorizer for acting in multiple ROMs at the same time.
  • Atari roms are packaged within the pip package.

Quick Start

The ALE currently supports three different interfaces: C++, Python, and Gymnasium.

Python

You simply need to install the ale-py package distributed via PyPI:

pip install ale-py

Note: Make sure you're using an up-to-date version of pip or the installation may fail.

You can now import the ALE in your Python projects with providing a direct interface to Stella for interacting with games

from ale_py import ALEInterface, roms

ale = ALEInterface()
ale.loadROM(roms.get_rom_path("breakout"))
ale.reset_game()

reward = ale.act(0)  # noop
screen_obs = ale.getScreenRGB()

Gymnasium

For simplicity for installing ale-py with Gymnasium, pip install "gymnasium[atari]" shall install all necessary modules and ROMs. See Gymnasium introductory page for description of the API to interface with the environment.

import gymnasium as gym
import ale_py

gym.register_envs(ale_py)  # unnecessary but helpful for IDEs

env = gym.make('ALE/Breakout-v5', render_mode="human")  # remove render_mode in training
obs, info = env.reset()
episode_over = False
while not episode_over:
    action = policy(obs)  # to implement - use `env.action_space.sample()` for a random policy
    obs, reward, terminated, truncated, info = env.step(action)

    episode_over = terminated or truncated
env.close()

To run with continuous actions, you can simply modify the call to gym.make above with:

env = gym.make('ALE/Breakout-v5', continuous=True, render_mode="human")

For all the environments available and their description, see gymnasium atari page.

A vectorized environment with preprocessing, written in C++, is also available with gym.make_vec("ALE/Breakout-v5", num_envs=10). See vector-environment for more information.

C++

The following instructions will assume you have a valid C++17 compiler and vcpkg installed.

We use CMake as a first class citizen, and you can use the ALE directly with any CMake project. To compile and install the ALE you can run

mkdir build && cd build
cmake ../ -DCMAKE_BUILD_TYPE=Release
cmake --build . --target install

There are optional flags -DSDL_SUPPORT=ON/OFF to toggle SDL support (i.e., display_screen and sound support; OFF by default), -DBUILD_CPP_LIB=ON/OFF to build the ale-lib C++ target (ON by default), and -DBUILD_PYTHON_LIB=ON/OFF to build the pybind11 wrapper (ON by default).

Finally, you can link against the ALE in your own CMake project as follows

find_package(ale REQUIRED)
target_link_libraries(YourTarget ale::ale-lib)

Citing

If you use the ALE in your research, we ask that you please cite the following.

M. G. Bellemare, Y. Naddaf, J. Veness and M. Bowling. The Arcade Learning Environment: An Evaluation Platform for General Agents, Journal of Artificial Intelligence Research, Volume 47, pages 253-279, 2013.

In BibTeX format:

@Article{bellemare13arcade,
    author = {{Bellemare}, M.~G. and {Naddaf}, Y. and {Veness}, J. and {Bowling}, M.},
    title = {The Arcade Learning Environment: An Evaluation Platform for General Agents},
    journal = {Journal of Artificial Intelligence Research},
    year = "2013",
    month = "jun",
    volume = "47",
    pages = "253--279",
}

If you use the ALE with sticky actions (flag repeat_action_probability), or if you use the different game flavours (mode and difficulty switches), we ask you that you also cite the following:

M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht, M. Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents, Journal of Artificial Intelligence Research, Volume 61, pages 523-562, 2018.

In BibTex format:

@Article{machado18arcade,
    author = {Marlos C. Machado and Marc G. Bellemare and Erik Talvitie and Joel Veness and Matthew J. Hausknecht and Michael Bowling},
    title = {Revisiting the Arcade Learning Environment: Evaluation Protocols and Open Problems for General Agents},
    journal = {Journal of Artificial Intelligence Research},
    volume = {61},
    pages = {523--562},
    year = {2018}
}

If you use the CALE (Continuous ALE), we ask you that you also cite the following:

Jesse Farebrother and Pablo Samuel Castro. Cale: Continuous arcade learning environment.Ad-vances in Neural Information Processing Systems, 2024.

In BibTex format:

@article{farebrother2024cale,
  title={C{ALE}: Continuous Arcade Learning Environment},
  author={Jesse Farebrother and Pablo Samuel Castro},
  journal={Advances in Neural Information Processing Systems},
  year={2024}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ale_py-0.11.1.tar.gz (508.3 kB view details)

Uploaded Source

Built Distributions

ale_py-0.11.1-cp313-cp313-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.13Windows x86-64

ale_py-0.11.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

ale_py-0.11.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

ale_py-0.11.1-cp313-cp313-macosx_13_0_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13macOS 13.0+ x86-64

ale_py-0.11.1-cp313-cp313-macosx_13_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.13macOS 13.0+ ARM64

ale_py-0.11.1-cp312-cp312-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.12Windows x86-64

ale_py-0.11.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

ale_py-0.11.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

ale_py-0.11.1-cp312-cp312-macosx_13_0_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.12macOS 13.0+ x86-64

ale_py-0.11.1-cp312-cp312-macosx_13_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.12macOS 13.0+ ARM64

ale_py-0.11.1-cp311-cp311-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.11Windows x86-64

ale_py-0.11.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

ale_py-0.11.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

ale_py-0.11.1-cp311-cp311-macosx_13_0_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.11macOS 13.0+ x86-64

ale_py-0.11.1-cp311-cp311-macosx_13_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.11macOS 13.0+ ARM64

ale_py-0.11.1-cp310-cp310-win_amd64.whl (3.5 MB view details)

Uploaded CPython 3.10Windows x86-64

ale_py-0.11.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

ale_py-0.11.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

ale_py-0.11.1-cp310-cp310-macosx_13_0_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.10macOS 13.0+ x86-64

ale_py-0.11.1-cp310-cp310-macosx_13_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 13.0+ ARM64

ale_py-0.11.1-cp39-cp39-win_amd64.whl (3.4 MB view details)

Uploaded CPython 3.9Windows x86-64

ale_py-0.11.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

ale_py-0.11.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (4.6 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

ale_py-0.11.1-cp39-cp39-macosx_13_0_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9macOS 13.0+ x86-64

ale_py-0.11.1-cp39-cp39-macosx_13_0_arm64.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 13.0+ ARM64

File details

Details for the file ale_py-0.11.1.tar.gz.

File metadata

  • Download URL: ale_py-0.11.1.tar.gz
  • Upload date:
  • Size: 508.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ale_py-0.11.1.tar.gz
Algorithm Hash digest
SHA256 ef2f6032b6b8ec2de65a9824d575c814043ff1e7a56458a15440640b284a23cc
MD5 350efdcdf6b5e82155cc2a438e9851e2
BLAKE2b-256 f4d320194558db47ec946d48dd8eee8f761495ffd2ecc739ef9391d699752211

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.11.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ale_py-0.11.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c46c0fe42bb1616ac30b18248071149a206ae8e656030318ad30d79450ef0721
MD5 32f56ba1058fcdec26d279b85be88d04
BLAKE2b-256 e41a1712e362ff62b4ea9f4850157e78fa0d27ef5e8bce1daadd001a56e5b3a1

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b6697fbcb5498b336afd79138fc52a688ee3f969d235f2b2ac7e2426ad2b4b64
MD5 37271a9dec67629fae4164e6468a5e04
BLAKE2b-256 a2652d530af67627ea69d386d6a9c2826dc6dfe8997f5ce0e9c2966533cb3711

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 2f27d02f86b5c8fa275196ae8180fc47cbd0902511bc287c61762f1777997bd3
MD5 e8a1e2a0463a22cde6f46182e9c514c7
BLAKE2b-256 6144868f1b1578a2f93b9d3e2f327b89c36653663d24d6d0c37d05d87e26bb5a

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp313-cp313-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp313-cp313-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 783d641ad220588d9794726b784a28803369f6ba3c0ff3dc272a3e086bdd1fcf
MD5 01cb026fb971ffca48f5099097a052a0
BLAKE2b-256 e7929a03eed9a49e563f5639626317deacd5f4c23c4f89a77c07f156195937be

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp313-cp313-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp313-cp313-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9b1231bd1d12edafe901f66b86c64fa030b956a0dfacfd739bcbfa792310b5b9
MD5 a57aca708b366327ad041c1615fcb259
BLAKE2b-256 d93178a3118ff357252c1eb9a2740dcfe88fe4d35c04ab1f0a353975f6405a4c

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.11.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ale_py-0.11.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 abd6684f1e0d5ad148decd003398c50303f3dec431ffdc140b6ed9c88eb590c6
MD5 09fff8b2215473addb9b161d8c98959c
BLAKE2b-256 1340afc263e4ab2d12424983202fd8e49af59b51960dc27305e61b03a2b9918f

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 8b4ba8865592677756081667908a5d4d31fee66be42b5d1843abd73dc6967743
MD5 264aa1540b9c8dc96cee4356b2cac6e2
BLAKE2b-256 41cef1e5d13992c6310bf71ac06ef83a4226682b12445d6edbd509d1ecaf34f1

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 5c023dcd4e2a196d72b0263d3bfa84077d2d033da7ac941013b45927167afcaa
MD5 2b8802daacc1a782bff04c863d1148c0
BLAKE2b-256 be02f1098f15e9dd3bf72aad5eb2291255c9ec15c1a05e4bf182c64aeb5db137

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp312-cp312-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp312-cp312-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 a31c96cdca1cc6730b6237a22fe720397aeab16a12cd2401b227553bdf319bb1
MD5 05fdf06a299f60ecee01611895110a2f
BLAKE2b-256 32f75ec9c89cf2ca8d523d4425d902957d6b1cd4c9f4327d6db4d39de2732840

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp312-cp312-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp312-cp312-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9f6e10193dbce79c24cdf8d4861951f8fe7942b8a9c1e1f30d8fe67cfef62fd5
MD5 dc9bf72e55f36fb6d62be0f5b2f29a7b
BLAKE2b-256 4079d6dae366dc022e4888c6e5fd0dd28ea50cc012fb72a6f19fe35e8b1aa92c

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.11.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ale_py-0.11.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5d9beedfcc926809b5a6218da07d706596e1d6862f6830fa59ee73fff42fe007
MD5 ca30a16b84a64bb39f67598fb8126651
BLAKE2b-256 99c9127a6b5bb40b4983ea3419fd6ab6d9295ad24971e0af4007f8cbf9431906

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 49563e62ba8929ba656046b17503346e6b9304b44384591b23004a402aba3d25
MD5 bd4cf52b4e6477986d2341bc9d479976
BLAKE2b-256 4a08b6215fbc7791e921af2d32395061215ceb40839b33c041356698bd7ef302

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 85b59e5346e25fb94c7052be99f8bca7e058c46ace23967088ab1310405723d1
MD5 9ef6b9e42bb302ac558b4ca1a0bb634d
BLAKE2b-256 b0e32964eb72fab09b75c1bcd892b4e7717996db15c2f05bd8bb5e14fef8c03e

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp311-cp311-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp311-cp311-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 40cbcac183526c2b238b35cb983c60c2f018ab4019fc522b6226313052eead4a
MD5 07648204ec95351bcfb69e15a939eded
BLAKE2b-256 618023a0becfd0b1140733c16b1c401969ce69f205afe772124e9e82047dce10

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp311-cp311-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp311-cp311-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 1a5e6df15e38b09fd6ae1b7630d671be11f3aa668404f2bc0e0487db389e5424
MD5 81e50bc61bb96775d0c1dd5997b7d5be
BLAKE2b-256 034a2ef2b04100c0ad562d8e649d44b183d158c0453b93964feda061d17d9674

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.11.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ale_py-0.11.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b96757527c13bbc3b94941149dbc7060ff998eefcd2e4bfe3d5714d97fc249c8
MD5 bbef18d603f2a787188986018668b26c
BLAKE2b-256 cab2efa81d4f38b259b8eeca3ff4730585ce575e17124ed6aab47ed15f1beeb0

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 90318e3b3e9cfd08159da4c45a192d859fb88d6110bdad08b21b210c8693fd8a
MD5 35d983d8636546e7f50b92b6f80408a9
BLAKE2b-256 f7b9f142802480be539d0368f81f172731c84f715181775c7099913b62fcf06a

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 46b265f9352880b1d352bfd3e55a646f6eae736d72bd9b721a68ee5885099676
MD5 5d033c512e0385ef4d5a1ae28541cca5
BLAKE2b-256 8f057e6d3088585f2cfc0d2ba2e50d57976f6827e1abdd5e0d48fc0eec207997

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp310-cp310-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp310-cp310-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 b3473b62b66096b950274718fc7e73f85972666971da9fb5ecdb40149a7c8d6d
MD5 b9671fd937f0384a2bc87488ab34505a
BLAKE2b-256 e6a36492f8f96b7e52a137eb3471a8a0b9bb775453b238d12c4570d3eb059316

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp310-cp310-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp310-cp310-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 9adbc828ad31ae4fbbfc1a43939117330d2e8165fad415b096c1796772f9053d
MD5 18cc2204aa1447ed3a92fefc6868e5ad
BLAKE2b-256 e27c42b43156eca7d1bb3fd36d3e0be2c071dcbe2bf2f4310a31694d51907a15

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ale_py-0.11.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.9

File hashes

Hashes for ale_py-0.11.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0ae5a44eeeaaab185e624dc3f7fd704affdbc58722dc9f441f3997edf63d488e
MD5 a1ce0db4b9983e7350091d866ec4e708
BLAKE2b-256 0992d48472341d298eacfc685ca377cb5b4a565cce7f0290100e91a4d74719a8

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 00510d93d45aa4d41113355530f317029ec0babef87b4e03ffdcdc63f5f417ce
MD5 fcba2acf55578729c5a36e840d708cda
BLAKE2b-256 a3f0667ebd4f6abd8393c764820abfb88c561dd9833433cba6bc039f11d217a9

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 b1730bd222549fae42730a548b23f3154c4165da0cfff50ba72d6248503409fc
MD5 fdf9799d14e262956bef59c93f576319
BLAKE2b-256 e9851e9461f56a88f918a21ff4e359c8c2eecc061fcdaef5609f2eb908f86d79

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp39-cp39-macosx_13_0_x86_64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp39-cp39-macosx_13_0_x86_64.whl
Algorithm Hash digest
SHA256 7e822e9549011b17477789746bc2de9544b2ef3a4246380b8604ed7989e9ec7e
MD5 613e9be193a7f7f626d8b54250671156
BLAKE2b-256 04748ddf0688d53e19f27bdb4c07d7a532e51dce4f1ca0ecc5431a0a9b17f061

See more details on using hashes here.

File details

Details for the file ale_py-0.11.1-cp39-cp39-macosx_13_0_arm64.whl.

File metadata

File hashes

Hashes for ale_py-0.11.1-cp39-cp39-macosx_13_0_arm64.whl
Algorithm Hash digest
SHA256 c9e41890007e119baea9729f2bb2905c5fdbf2cec490a05feb127865a776475f
MD5 83b78622d515299ab85cb58027136f25
BLAKE2b-256 0473f8fee85a1d48bb22e16afd7e320a3c03fa20a1db82ed098ff46c141ab2c4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page