Ranking the risk of antibiotic resistance for genomes/metagenomes
Project description
arg_ranker
arg_ranker evaluates the risk of ARGs in genomes and metagenomes
Install
pip install arg_ranker
Requirement
- python 3
- kraken2:
conda install -c bioconda kraken2
download kraken2 database:kraken2-build --standard --db $KRAKENDB
where $krakenDB is your preferred database name/location\ - diamond:
conda install -c bioconda diamond
\ - blast+:
conda install -c bioconda blast
How to use it
- put all your genomes (.fa or .fasta) and metagenomes (.fq or .fastq) into one folder ($INPUT)
- run
arg_ranker -i $INPUT --kkdb $KRAKENDB
- run
sh arg_ranking/script_output/arg_ranker.sh
Output
-
Sample_ranking_results.txt (Table 1)
Sample Rank_I_abu Rank_II_abu Rank_III_abu Rank_IV_abu Unassessed_abu Total_abu Rank_code Rank_I_risk Rank_II_risk Rank_III_risk Rank_IV_risk ARGs_unassessed_risk note1 WEE300_all-trimmed-decont_1.fastq 2.9E-02 0.0E+00 7.4E-02 7.8E-01 1.2E-01 4.2E-04 1.0-0.0-0.5-1.7-0.3 1.0 0.0 0.5 1.7 0.3 hospital_metagenome EsCo_genome.fasta 0.0E+00 0.0E+00 0.0E+00 1.0E+00 0.0E+00 2.0E+00 0.0-0.0-0.0-2.2-0.0 0.0 0.0 0.0 2.2 0.0 E.coli_genome
- We compute the abundance of ARGs as the copy number of ARGs divided by the 16S copy number in a sample
Rank_I - Unassessed_abu: total abundance of ARGs of a risk rank
Total_abu: total abundance of all ARGs - We compute the risk of ARGs as the average abundance of ARGs of a risk rank divided the average abundance of all ARGs
Rank_I_risk - Unassessed_risk: the risk of ARGs of a risk rank
Rank_code: a code of ARG risk from Rank I to Unassessed
- Sample_ARGpresence.txt:
The abundance, the gene family, and the antibiotic of resistance of ARGs detected in the input samples
Test
run arg_ranker -i example --kkdb $KRAKENDB
run sh arg_ranking/script_output/arg_ranker.sh
The arg_ranking/Sample_ranking_results.txt should look like Table 1
Metadata for your samples (optional)
arg_ranker can merge your sample metadata into the results of ARG ranking (i.e. note1 in Table 1).
Simply put all information you would like to include into a tab-delimited table
Make sure that your sample names are listed as the first column (check example/metadata.txt).
Copyright
Dr. An-Ni Zhang (MIT), Prof. Eric Alm (MIT), Prof. Tong Zhang* (University of Hong Kong)
Citation
- Zhang AN, ..., Alm EJ, Zhang T: Choosing Your Battles: Which Resistance Genes Warrant Global Action? (bioRxiv coming soon)
- Yang Y, ..., Tiedje JM, Zhang T: ARGs-OAP: online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 2016.
Contact
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file arg_ranker-2.6.tar.gz
.
File metadata
- Download URL: arg_ranker-2.6.tar.gz
- Upload date:
- Size: 6.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ed17a0e717bd7f6cd1176364bf5c466054af05384c34858e06f10a65d8795590
|
|
MD5 |
69e70ceb42efde33406e05edad51c9d1
|
|
BLAKE2b-256 |
021e09254fb449bb2e9443da742a23589a19508a4d67a8e778e059ff417c6b53
|
File details
Details for the file arg_ranker-2.6-py3.6.egg
.
File metadata
- Download URL: arg_ranker-2.6-py3.6.egg
- Upload date:
- Size: 90.9 MB
- Tags: Egg
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.8.0 tqdm/4.32.2 CPython/3.6.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8a357e3b01e61b12b04ede81777e0c12911447d4487fd0ec604ce63563bfef0d
|
|
MD5 |
124d951aaf237079e7f4f9c68d81ad51
|
|
BLAKE2b-256 |
e623c149f82990df1013820775336e27dd0bca3c8eb90d394e56f8f96e8b1a98
|