Skip to main content

AutoML framework for implementing automated machine learning on data streams.

Project description

AutoML Streams

An AutoML framework for implementing automated machine learning on data streams architectures in production environments.

Installation

From pip

pip install -U automl-streams

or conda:

conda install automl-streams

Usage

from skmultiflow.trees import HoeffdingTree
from skmultiflow.evaluation import EvaluatePrequential
from automlstreams.streams import KafkaStream

stream = KafkaStream(topic, bootstrap_servers=broker)
stream.prepare_for_use()
ht = HoeffdingTree()
evaluator = EvaluatePrequential(show_plot=True,
                                pretrain_size=200,
                                max_samples=3000)

evaluator.evaluate(stream=stream, model=[ht], model_names=['HT'])

More demonstrations available in the demos directory.

Development

Create and activate a virtualenv for the project:

$ virtualenv .venv
$ source .venv/bin/activate

Install the development dependencies:

$ pip install -e . 

Install the app in "development" mode:

$ python setup.py develop  

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for automl-streams, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size automl_streams-0.0.2-py2.py3-none-any.whl (16.4 kB) File type Wheel Python version py2.py3 Upload date Hashes View hashes
Filename, size automl-streams-0.0.2.tar.gz (22.2 kB) File type Source Python version None Upload date Hashes View hashes

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page