Skip to main content

A ultra-high performance package for sending requests to Baseten Embedding Inference'

Project description

High performance client for Baseten.co

This library provides a high-performance Python client for Baseten.co endpoints including embeddings, reranking, and classification. It was built for massive concurrent post requests to any URL, also outside of baseten.co. PerformanceClient releases the GIL while performing requests in the Rust, and supports simulaneous sync and async usage. It was benchmarked with >1200 rps per client in our blog. PerformanceClient is built on top of pyo3, reqwest and tokio and is MIT licensed.

benchmarks

Installation

pip install baseten_performance_client

Usage

import os
import asyncio
from baseten_performance_client import PerformanceClient, OpenAIEmbeddingsResponse, RerankResponse, ClassificationResponse

api_key = os.environ.get("BASETEN_API_KEY")
base_url_embed = "https://model-yqv4yjjq.api.baseten.co/environments/production/sync"
# Also works with OpenAI or Mixedbread.
# base_url_embed = "https://api.openai.com" or "https://api.mixedbread.com"
client = PerformanceClient(base_url=base_url_embed, api_key=api_key)

Embeddings

Synchronous Embedding

texts = ["Hello world", "Example text", "Another sample"]
response = client.embed(
    input=texts,
    model="my_model",
    batch_size=4,
    max_concurrent_requests=32,
    timeout_s=360
)

# Accessing embedding data
print(f"Model used: {response.model}")
print(f"Total tokens used: {response.usage.total_tokens}")
print(f"Total time: {response.total_time:.4f}s")
if response.individual_batch_request_times:
    for i, batch_time in enumerate(response.individual_batch_request_times):
        print(f"  Time for batch {i}: {batch_time:.4f}s")

for i, embedding_data in enumerate(response.data):
    print(f"Embedding for text {i} (original input index {embedding_data.index}):")
    # embedding_data.embedding can be List[float] or str (base64)
    if isinstance(embedding_data.embedding, list):
        print(f"  First 3 dimensions: {embedding_data.embedding[:3]}")
        print(f"  Length: {len(embedding_data.embedding)}")

# Using the numpy() method (requires numpy to be installed)
import numpy as np
numpy_array = response.numpy()
print("\nEmbeddings as NumPy array:")
print(f"  Shape: {numpy_array.shape}")
print(f"  Data type: {numpy_array.dtype}")
if numpy_array.shape[0] > 0:
    print(f"  First 3 dimensions of the first embedding: {numpy_array[0][:3]}")

Note: The embed method is versatile and can be used with any embeddings service, e.g. OpenAI API embeddings, not just for Baseten deployments.

Asynchronous Embedding

async def async_embed():
    texts = ["Async hello", "Async example"]
    response = await client.async_embed(
        input=texts,
        model="my_model",
        batch_size=2,
        max_concurrent_requests=16,
        timeout_s=360
    )
    print("Async embedding response:", response.data)

# To run:
# asyncio.run(async_embed())

Embedding Benchmarks

Comparison against pip install openai for /v1/embeddings. Tested with the ./scripts/compare_latency_openai.py with mini_batch_size of 128, and 4 server-side replicas. Results with OpenAI similar, OpenAI allows a max mini_batch_size of 2048.

Number of inputs / embeddings Number of Tasks PerformanceClient (s) AsyncOpenAI (s) Speedup
128 1 0.12 0.13 1.08×
512 4 0.14 0.21 1.50×
8 192 64 0.83 1.95 2.35×
131 072 1 024 4.63 39.07 8.44×
2 097 152 16 384 70.92 903.68 12.74×

Gerneral Batch POST

The batch_post method is generic. It can be used to send POST requests to any URL, not limited to Baseten endpoints. The input and output can be any JSON item.

Synchronous Batch POST

payload1 = {"model": "my_model", "input": ["Batch request sample 1"]}
payload2 = {"model": "my_model", "input": ["Batch request sample 2"]}
response_obj = client.batch_post(
    url_path="/v1/embeddings", # Example path, adjust to your needs
    payloads=[payload1, payload2],
    max_concurrent_requests=96,
    timeout_s=360
)
print(f"Total time for batch POST: {response_obj.total_time:.4f}s")
for i, (resp_data, headers, time_taken) in enumerate(zip(response_obj.data, response_obj.response_headers, response_obj.individual_request_times)):
    print(f"Response {i+1}:")
    print(f"  Data: {resp_data}")
    print(f"  Headers: {headers}")
    print(f"  Time taken: {time_taken:.4f}s")

Asynchronous Batch POST

async def async_batch_post_example():
    payload1 = {"model": "my_model", "input": ["Async batch sample 1"]}
    payload2 = {"model": "my_model", "input": ["Async batch sample 2"]}
    response_obj = await client.async_batch_post(
        url_path="/v1/embeddings",
        payloads=[payload1, payload2],
        max_concurrent_requests=4,
        timeout_s=360
    )
    print(f"Async total time for batch POST: {response_obj.total_time:.4f}s")
    for i, (resp_data, headers, time_taken) in enumerate(zip(response_obj.data, response_obj.response_headers, response_obj.individual_request_times)):
        print(f"Async Response {i+1}:")
        print(f"  Data: {resp_data}")
        print(f"  Headers: {headers}")
        print(f"  Time taken: {time_taken:.4f}s")

# To run:
# asyncio.run(async_batch_post_example())

Reranking

Reranking compatible with BEI or text-embeddings-inference.

Synchronous Reranking

query = "What is the best framework?"
documents = ["Doc 1 text", "Doc 2 text", "Doc 3 text"]
rerank_response = client.rerank(
    query=query,
    texts=documents,
    return_text=True,
    batch_size=2,
    max_concurrent_requests=16,
    timeout_s=360
)
for res in rerank_response.data:
    print(f"Index: {res.index} Score: {res.score}")

Asynchronous Reranking

async def async_rerank():
    query = "Async query sample"
    docs = ["Async doc1", "Async doc2"]
    response = await client.async_rerank(
        query=query,
        texts=docs,
        return_text=True,
        batch_size=1,
        max_concurrent_requests=8,
        timeout_s=360
    )
    for res in response.data:
        print(f"Async Index: {res.index} Score: {res.score}")

# To run:
# asyncio.run(async_rerank())

Classification

Predicy (classification endpoint) compatible with BEI or text-embeddings-inference.

Synchronous Classification

texts_to_classify = [
    "This is great!",
    "I did not like it.",
    "Neutral experience."
]
classify_response = client.classify(
    inputs=texts_to_classify,
    batch_size=2,
    max_concurrent_requests=16,
    timeout_s=360
)
for group in classify_response.data:
    for result in group:
        print(f"Label: {result.label}, Score: {result.score}")

Asynchronous Classification

async def async_classify():
    texts = ["Async positive", "Async negative"]
    response = await client.async_classify(
        inputs=texts,
        batch_size=1,
        max_concurrent_requests=8,
        timeout_s=360
    )
    for group in response.data:
        for res in group:
            print(f"Async Label: {res.label}, Score: {res.score}")

# To run:
# asyncio.run(async_classify())

Error Handling

The client can raise several types of errors. Here's how to handle common ones:

  • requests.exceptions.HTTPError: This error is raised for HTTP issues, such as authentication failures (e.g., 403 Forbidden if the API key is wrong), server errors (e.g., 5xx), or if the endpoint is not found (404). You can inspect e.response.status_code and e.response.text (or e.response.json() if the body is JSON) for more details.
  • ValueError: This error can occur due to invalid input parameters (e.g., an empty input list for embed, invalid batch_size or max_concurrent_requests values). It can also be raised by response.numpy() if embeddings are not float vectors or have inconsistent dimensions.

Here's an example demonstrating how to catch these errors for the embed method:

import requests

# client = PerformanceClient(base_url="your_b10_url", api_key="your_b10_api_key")

texts_to_embed = ["Hello world", "Another text example"]
try:
    response = client.embed(
        input=texts_to_embed,
        model="your_embedding_model", # Replace with your actual model name
        batch_size=2,
        max_concurrent_requests=4,
        timeout_s=60 # Timeout in seconds
    )
    # Process successful response
    print(f"Model used: {response.model}")
    print(f"Total tokens: {response.usage.total_tokens}")
    for item in response.data:
        embedding_preview = item.embedding[:3] if isinstance(item.embedding, list) else "Base64 Data"
        print(f"Index {item.index}, Embedding (first 3 dims or type): {embedding_preview}")

except requests.exceptions.HTTPError as e:
    print(f"An HTTP error occurred: {e}, code {e.args[0]}")

For asynchronous methods (async_embed, async_rerank, async_classify, async_batch_post), the same exceptions will be raised by the await call and can be caught using a try...except block within an async def function.

Development

# Install prerequisites
sudo apt-get install patchelf
# Install cargo if not already installed.

# Set up a Python virtual environment
python -m venv .venv
source .venv/bin/activate

# Install development dependencies
pip install maturin[patchelf] pytest requests numpy

# Build and install the Rust extension in development mode
maturin develop
cargo fmt
# Run tests
pytest tests

Contributions

Feel free to contribute to this repo, tag @michaelfeil for review.

License

MIT License

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

baseten_performance_client-0.0.11.tar.gz (61.3 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl (3.6 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ ARMv7l

baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ ARM64

baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl (3.6 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ ARMv7l

baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded PyPymanylinux: glibc 2.28+ ARM64

baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_i686.whl (4.1 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ i686

baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_armv7l.whl (3.8 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARMv7l

baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ x86-64

baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.1 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ ppc64le

baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.17+ i686

baseten_performance_client-0.0.11-cp313-cp313t-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

baseten_performance_client-0.0.11-cp313-cp313t-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.13tmacOS 10.12+ x86-64

baseten_performance_client-0.0.11-cp38-abi3-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8+Windows x86-64

baseten_performance_client-0.0.11-cp38-abi3-win32.whl (1.5 MB view details)

Uploaded CPython 3.8+Windows x86

baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8+musllinux: musl 1.2+ x86-64

baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_i686.whl (4.2 MB view details)

Uploaded CPython 3.8+musllinux: musl 1.2+ i686

baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_armv7l.whl (3.8 MB view details)

Uploaded CPython 3.8+musllinux: musl 1.2+ ARMv7l

baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_aarch64.whl (4.5 MB view details)

Uploaded CPython 3.8+musllinux: musl 1.2+ ARM64

baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_28_armv7l.whl (3.6 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.28+ ARMv7l

baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_28_aarch64.whl (4.3 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.28+ ARM64

baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.17+ x86-64

baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (4.1 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.17+ ppc64le

baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.8+manylinux: glibc 2.17+ i686

baseten_performance_client-0.0.11-cp38-abi3-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8+macOS 11.0+ ARM64

baseten_performance_client-0.0.11-cp38-abi3-macosx_10_12_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8+macOS 10.12+ x86-64

File details

Details for the file baseten_performance_client-0.0.11.tar.gz.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11.tar.gz
Algorithm Hash digest
SHA256 d7b1f6084e03bc6a137b02cdf5e5045150fb36940efc666ae2cb804d6e9b3f6e
MD5 ab16623968b42faa42520bde6e0afdaa
BLAKE2b-256 c7164156a1af811a42014b53b739a78a1c886f2630adfb29e22c31711c5e1465

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6cea12ddf4b878cb9df5ca9ee88e5c4a564b6baf63c3fe2e9b966db480e83205
MD5 f44526f96a6c2316cd275b91acdb6ef2
BLAKE2b-256 73bdd5cb510e727c68b65248dd266a690bec1c06f6fc63b0878c7f7e2ec13950

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp311-pypy311_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp311-pypy311_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 53d9518542e75c56dfb9b8c9c54bf50575976bb99d250421aba7d49446583500
MD5 c78a64884d5b134e7134fbcc0228fc17
BLAKE2b-256 4c316ae6a8cac65093e78bf79bd1ef07893ab7b2e0da4ccf41d555c33a9f7de1

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 68b5dfecb3f4e56e1036e49d2bfd945218290c8b13b9e806ab4a8743f57269db
MD5 1fb0c7801fb51763396d891c7039674b
BLAKE2b-256 5c601a1fc9718bdc461bc0728c7cb23a432a37dbda2050f9f9487b133e2bf770

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9c1389afc1312f08d0c5b2b4c636d216987db9295246544f3397dae10e18e420
MD5 a8a7cedf818244fd89562ef3de3815b6
BLAKE2b-256 e143f8e6bf47c09c2c5d5d2566df6cb870beafd2d1246eb14a732600f19afcb4

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp310-pypy310_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 24c163760313157bf0b2a11f16095ccef8f9f667752aaa0b20c35a19a74ac883
MD5 37f3a884073f1f99e0d80f84e2926548
BLAKE2b-256 03532bb22d000b87d241ba1ded6f1e8865b3f2ce486da7e537ca289c81ceaa0c

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 ab155b6d661c045e61ce27ef2fdadaaa88c9efc55b3dad8387ba57132192db2f
MD5 bbf9c7e9c921e6413ab32a35611156f9
BLAKE2b-256 41fb60dfa3ead410f33d3052f4d5ee6f5cf3e0396e97b1bc88edf119e8f55de1

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 8e599ac2df0470c3b9ee5072eec9aaec006c3a1758b80c83ada320f619a6f350
MD5 a8969114a478d718c72fcd065e054b73
BLAKE2b-256 31cd416c6c92a37433fe3cbc0d6be45e7ea3e666cd543b9206674162cba92489

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b2bbff801465c8d941cc2af9713e8abf708ef2c2d36bc0fc6309f56c030ddab4
MD5 f6d7da8f10d0bdea45df7f177d60528f
BLAKE2b-256 bea58c2d49eb2206e50f3635753b5820c2d9a1efa29ba4f9a40486f715887464

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 658c1518a6e97cd185d8ebb6d89deb39293f22227f43e697b1a29dc22c27da9d
MD5 f7a3fab43864f151b2d0ee2c2bd0cb1c
BLAKE2b-256 c35b6a6b02aba2bde1a2696cf6372d818c8a602c6e258abebe9c5faf36eb8d5e

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a79620e50396fdaaedbd99e3d81632aafe2635ad31792e050a6455975a338f60
MD5 c26cf748e3d8a657c0a4d849e08d2fbe
BLAKE2b-256 5bdb28c8e4ec92702fdd33ace511a4004c08d7b7148d6324249a1a2f817e7342

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 bafca4d108be3a0deae770a71b9645a5d6b24406f2f39944c6be5cfe55f0b158
MD5 0d9c205919f4e0b0c90de742bd7d81dc
BLAKE2b-256 95f94b55770b24eab711f46e53139b61ff6d387576d2beba573ad76d50b74a27

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 7502a47c9ca729ca961ffd4ae84f8c5d088ed1db1dc5df32d018f55b3790daa1
MD5 6b5f455143f0ec344df65fee62eb2fec
BLAKE2b-256 45d2f9aa4128f94661627a13c8a790a41bff0481eca10bac1ad4ff264aec5fb0

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f6ba770df3fd721b7ca62318a8c3adf05a9f90b4c5b2c0fb5f79d5811e23a1eb
MD5 152c8c1517f1827f84303560779f0cc1
BLAKE2b-256 63263143e278b829c34e87b557145da4d17f4df136d866e46f358892a07aecd2

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 8a45445d98b98ca309b7af497bdba657a9b29f7e9bdb860f9d88219240a28537
MD5 5fd231042dd93cbbcf695f3f239017a1
BLAKE2b-256 9608eea13457edc424c3b47ce298d201bc94798d90703019df4aeb09b34edc4d

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bfe25fb9fbf7dca8dfd6e049b5d82294d7e88c35d831a4c92971840c1b5d2b99
MD5 52dadb6d95d63af153415563db64a30d
BLAKE2b-256 fa634435b330665e41dbb2bbfb9fed575a97d3d9427093e27504c5a29c2b3129

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 20b0e353561fa92b0abfee15fdd00e2df99f64157cebfd2213348a5fd7944afa
MD5 300225ae00f1c1771ddf8e153fd43059
BLAKE2b-256 84382fe2fea5e68316b8f78032982c601af9184770d3ee9628e44e7d067c142f

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp313-cp313t-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp313-cp313t-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 1dd09596e9da7d598b4da8db7de9c26df9674f329ef2ae9e8d8e59ff2bc8353f
MD5 940dcea1ba28d8dba693e880fcb401e1
BLAKE2b-256 dc579140d4e02966fa85e6db4a02a4b62a3b3b4b5dac4582586c67e052a5db35

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-win_amd64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 8d0b8ef9bbfebdd4325fca3fef88f7631911fd010e1f3e7686d7e3ea5b1f65b0
MD5 e76f07cbfe3fe1396a1c9d130e663409
BLAKE2b-256 2d136da93695a93a421b29aa555045b434458bf87909c2f4b93cd465c848610a

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-win32.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-win32.whl
Algorithm Hash digest
SHA256 06da2aab4ae4b05151c1fd9914ac1d7eb5a295ccedf1ae5aa64585fd3eafdc9d
MD5 e2a1b5dd1dc05b7b0e9138fb7e991491
BLAKE2b-256 2b1130924dbef5c5d311189452455d94d9eecaffeba2c70af2ed80ff73207cc5

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 e5e1efc24b718f36b4dc3d5caf5f6a31069d6d7f4100627d541149a0a844c6c8
MD5 8790bdd1d955989a85149467dc460e9b
BLAKE2b-256 d068c96a6ee9c46a11d06963bb1cb6cc03925a7bff831b53c4653c2c29b236fd

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c3c61b2d5440be84ab930a1466950f41d4d65a5eebe1f26784b8af6e8e93b708
MD5 17f3eefb48782df058ac0dd216c0998c
BLAKE2b-256 9110bd7bc72d7bafb4baae22ee832017f2c23a97f9370e295db344b4ffdce8b0

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_armv7l.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_armv7l.whl
Algorithm Hash digest
SHA256 7bb1420b3ca3736e3681113fbd0662e54d77818a37d45fefcdd43ed328843a1e
MD5 8c499cf5aefff23d0ad08c51f2799c4b
BLAKE2b-256 a3f651565a10dcfdaaeff361190c1f8267745a2a14cb7131de28fab561f436ec

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bca22801cded113f063781658787d8dd880be3ec2707ceca21189c757f39b21c
MD5 0c03a0fdd60fb57482865600da2c5e24
BLAKE2b-256 36e6f920fe33c4605ec269bd4a92c064aad2642e0fdd00926f8e5095a3c7956b

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_28_armv7l.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_28_armv7l.whl
Algorithm Hash digest
SHA256 cd81764def65b8e5a6831cefe0b6fb43fa2f0bce0732e013dee444b4f19ce337
MD5 872b5ef3e5b7c52c62dc83aa0695faac
BLAKE2b-256 2949d28d9860cfe38614b4d3353425fcd506915e5dcc440c6eb61c1cc4c33c2f

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 e964965c53c015bed2a1107882e5dda5e06e88bb61a53b9a514766cf870aeac6
MD5 fed0aeb4619a67ea864bcb13602e59cc
BLAKE2b-256 66a310032944dfa76a6f143146dc5f0926f9ffd197cb395b7cdc5b3853e6ef62

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1c686d0b052bf600157671d6b36d52719f1486ee3de20bf4b05bcb4f1458c5f
MD5 f7596c4cf551bd9a582519229a8ccfe9
BLAKE2b-256 18a1cd4adcae7e436e4fdf2ad201a30ebdd6b0538a9fe1cee640c530be7acf5a

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cb29a0751f0331eea3c70f8407c9fab530d7e226661357fb3ec33fb22c8660ad
MD5 f059ca1060d73db20a8f3bfe3f123a03
BLAKE2b-256 0ade75e098e989cb4c9171e8cfad59b6ff6c0378c7841ff0a4b672d8353c0923

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b2f347aad4567ba5854b294f4cc15f06aec7d391f4cbd1ddd1e96d3d7ec91cfe
MD5 aa05473658fcdd9df482d0852f41433b
BLAKE2b-256 026a9400d764e61634c271f35055cf2cb025b1490fc28cd632d5c5b9b310a68c

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 48beb944555d71d1b18d55a9e3577503407e3faf970bc43bc6e5b6fd1001fa0b
MD5 97577ba52edd95f4f18881839a429e79
BLAKE2b-256 c6ab4d0783771546eb32692941fdef6dc562ca3557263ca398418086a7f869b0

See more details on using hashes here.

File details

Details for the file baseten_performance_client-0.0.11-cp38-abi3-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for baseten_performance_client-0.0.11-cp38-abi3-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 2df6c6759c60317c35d84d5525a4af3fc66dba179c056dbe4047923f6babc42f
MD5 e64fbaa7c5b7e6f483eba6ff03c5bd58
BLAKE2b-256 c9f48744b5e37e84e06ddd95ed1915ff7dd3cd48bf3c2d2566ad14fa0319949d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page