Skip to main content

Testing GR analysis pipelines to use with Bilby

Project description

pipeline status coverage report

Bilby_TGR

This is the Bilby Testing General Relativity (TGR) package. It is used to develop and share analysis done by the LVC TGR group building on the Bilby stochastic sampling package.

Installation

To get started developing and using bilby_tgr, first clone the repository

$ git clone git@git.ligo.org:lscsoft/bilby_tgr.git

To install, enter the cloned directory and run

$ pip install .

To check that you have installed it correctly, open an python prompt and run

>>> import bilby_tgr
>>> bilby_tgr.tiger.source.lal_binary_black_hole

If this returns the function, then you have it installed! You can now add new functions to the sources and access them in the same way.

Running using bilby_pipe

Once you have installed bilby_tgr, you can use the bilby_pipe package to run stoachastic sampling. For help getting installed and setup with bilby_pipe itself, see the documentation. Here, we give an example ini file. Notice that the frequency-domain-source-model is pointing to the bilby_tgr.tiger.source.lal_binary_black_hole function. You can replace this with any new function you care to define in the bilby_tgr package.

trigger-time = 1186741861.5
detectors = [H1, L1, V1]
channel-dict = {H1:DCH-CLEAN_STRAIN_C02, L1:DCH-CLEAN_STRAIN_C02, V1:Hrec_hoft_V1O2Repro2A_16384Hz}
prior_file = 4s.prior
time-marginalization=False
distance-marginalization=True
phase-marginalization=True
create-plots=True
local-generation = True
psd-dict = {H1:BayesWave_median_PSD_H1.dat, L1:BayesWave_median_PSD_L1.dat, V1:BayesWave_median_PSD_V1.dat}

label = GW170814
outdir = dalpha_2
accounting = ligo.dev.o3.cbc.pe.lalinference

duration = 4
coherence-test = False

maximum-frequency=1024
minimum-frequency=20
sampling-frequency=2048
reference-frequency = 20
waveform-approximant = IMRPhenomPv2
frequency-domain-source-model = bilby_tgr.source.lal_binary_black_hole_TIGER

calibration-model=CubicSpline
spline-calibration-envelope-dict = {H1:GWTC1_GW170814_H_CalEnv.txt, L1:GWTC1_GW170814_L_CalEnv.txt, V1:GWTC1_GW170814_V_CalEnv.txt}
spline_calibration-nodes = 10

deltaT = 0.2
sampler = dynesty
sampler-kwargs = {nlive: 1000, nact=50}
n-parallel = 4

transfer-files = False

The other thing you need is a prior file (4s.prior in the above ini). This will be a standard CBC prior, plus any new parameters.

chirp_mass = UniformInComponentsChirpMass(name="chirp_mass", minimum=12.299703, maximum=45, unit='$M_{\\odot}$')
mass_ratio = UniformInComponentsMassRatio(name="mass_ratio", minimum=0.125, maximum=1)
mass_1 = Constraint(name="mass_1", minimum=1.001398, maximum=1000)
mass_2 = Constraint(name="mass_2", minimum=1.001398, maximum=1000)
a_1 = Uniform(name="a_1", minimum=0, maximum=0.88)
a_2 = Uniform(name="a_2", minimum=0, maximum=0.88)
tilt_1 = Sine(name="tilt_1")
tilt_2 = Sine(name="tilt_2")
phi_12 = Uniform(name="phi_12", minimum=0, maximum=2 * np.pi, boundary="periodic")
phi_jl = Uniform(name="phi_jl", minimum=0, maximum=2 * np.pi, boundary="periodic")
luminosity_distance = bilby.gw.prior.UniformSourceFrame(name="luminosity_distance", minimum=1e2, maximum=5e3, unit="Mpc")
dec = Cosine(name="dec")
ra = Uniform(name="ra", minimum=0, maximum=2 * np.pi, boundary="periodic")
theta_jn = Sine(name="theta_jn")
psi = Uniform(name="psi", minimum=0, maximum=np.pi, boundary="periodic")
phase = Uniform(name="phase", minimum=0, maximum=2 * np.pi, boundary="periodic")
dchi_0 = DeltaFunction(0.)
dchi_1 = DeltaFunction(0.)
dchi_2 = DeltaFunction(0.)
dchi_3 = DeltaFunction(0.)
dchi_4 = DeltaFunction(0.)
dchi_5l = DeltaFunction(0.)
dchi_6 = DeltaFunction(0.)
dchi_6l = DeltaFunction(0.)
dchi_7 = DeltaFunction(0.)
dbeta_2 = DeltaFunction(0.)
dbeta_3 = DeltaFunction(0.)
dalpha_2 = Uniform(minimum=-10, maximum=10, latex_label="$\\delta \\alpha_2$")
dalpha_3 = DeltaFunction(0.)
dalpha_4 = DeltaFunction(0.)
dalpha_5 = DeltaFunction(0.)

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bilby_tgr-0.1.tar.gz (48.1 kB view details)

Uploaded Source

Built Distribution

bilby_tgr-0.1-py3-none-any.whl (39.8 kB view details)

Uploaded Python 3

File details

Details for the file bilby_tgr-0.1.tar.gz.

File metadata

  • Download URL: bilby_tgr-0.1.tar.gz
  • Upload date:
  • Size: 48.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.17

File hashes

Hashes for bilby_tgr-0.1.tar.gz
Algorithm Hash digest
SHA256 a3c1fe9146111ed6d6da1110d332d311d55b2d4cf311aa18849732cb886f0a27
MD5 3f89bb62f94967e417ebd494aecb572b
BLAKE2b-256 4e4efca2e88112f6dc4c9d31b43ef9f7b019591b5f928d95169c62e0bedd22d5

See more details on using hashes here.

File details

Details for the file bilby_tgr-0.1-py3-none-any.whl.

File metadata

  • Download URL: bilby_tgr-0.1-py3-none-any.whl
  • Upload date:
  • Size: 39.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.17

File hashes

Hashes for bilby_tgr-0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 0a8c53df32f6b6ddafd64ec632d9c262f1c5aa76771486f69d3f6536c2d3d48a
MD5 453be07007a67ae15ead8a52ae0069f3
BLAKE2b-256 9e701236c1c3b863709b1d0b333bcad5b166d82c30851b4f0b9e7ca600b57bc8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page