Skip to main content

Testing GR analysis pipelines to use with Bilby

Project description

pipeline status coverage report

Bilby_TGR

This is the Bilby Testing General Relativity (TGR) package. It is used to develop and share analysis done by the LVC TGR group building on the Bilby stochastic sampling package.

Installation

To get started developing and using bilby_tgr, first clone the repository

$ git clone git@git.ligo.org:lscsoft/bilby_tgr.git

To install, enter the cloned directory and run

$ pip install .

To check that you have installed it correctly, open an python prompt and run

>>> import bilby_tgr
>>> bilby_tgr.tiger.source.lal_binary_black_hole

If this returns the function, then you have it installed! You can now add new functions to the sources and access them in the same way.

Running using bilby_pipe

Once you have installed bilby_tgr, you can use the bilby_pipe package to run stochastic sampling. For help getting installed and setup with bilby_pipe itself, see the documentation. Here, we give an example ini file. Notice that the frequency-domain-source-model is pointing to the bilby_tgr.tiger.source.lal_binary_black_hole function. You can replace this with any new function you care to define in the bilby_tgr package.

trigger-time = 1186741861.5
detectors = [H1, L1, V1]
channel-dict = {H1:DCH-CLEAN_STRAIN_C02, L1:DCH-CLEAN_STRAIN_C02, V1:Hrec_hoft_V1O2Repro2A_16384Hz}
prior_file = 4s.prior
time-marginalization=False
distance-marginalization=True
phase-marginalization=True
create-plots=True
local-generation = True
psd-dict = {H1:BayesWave_median_PSD_H1.dat, L1:BayesWave_median_PSD_L1.dat, V1:BayesWave_median_PSD_V1.dat}

label = GW170814
outdir = dalpha_2
accounting = ligo.dev.o3.cbc.pe.lalinference

duration = 4
coherence-test = False

maximum-frequency=1024
minimum-frequency=20
sampling-frequency=2048
reference-frequency = 20
waveform-approximant = IMRPhenomPv2
frequency-domain-source-model = bilby_tgr.source.lal_binary_black_hole_TIGER

calibration-model=CubicSpline
spline-calibration-envelope-dict = {H1:GWTC1_GW170814_H_CalEnv.txt, L1:GWTC1_GW170814_L_CalEnv.txt, V1:GWTC1_GW170814_V_CalEnv.txt}
spline_calibration-nodes = 10

deltaT = 0.2
sampler = dynesty
sampler-kwargs = {nlive: 1000, nact=50}
n-parallel = 4

transfer-files = False

The other thing you need is a prior file (4s.prior in the above ini). This will be a standard CBC prior, plus any new parameters.

chirp_mass = UniformInComponentsChirpMass(name="chirp_mass", minimum=12.299703, maximum=45, unit='$M_{\\odot}$')
mass_ratio = UniformInComponentsMassRatio(name="mass_ratio", minimum=0.125, maximum=1)
mass_1 = Constraint(name="mass_1", minimum=1.001398, maximum=1000)
mass_2 = Constraint(name="mass_2", minimum=1.001398, maximum=1000)
a_1 = Uniform(name="a_1", minimum=0, maximum=0.88)
a_2 = Uniform(name="a_2", minimum=0, maximum=0.88)
tilt_1 = Sine(name="tilt_1")
tilt_2 = Sine(name="tilt_2")
phi_12 = Uniform(name="phi_12", minimum=0, maximum=2 * np.pi, boundary="periodic")
phi_jl = Uniform(name="phi_jl", minimum=0, maximum=2 * np.pi, boundary="periodic")
luminosity_distance = bilby.gw.prior.UniformSourceFrame(name="luminosity_distance", minimum=1e2, maximum=5e3, unit="Mpc")
dec = Cosine(name="dec")
ra = Uniform(name="ra", minimum=0, maximum=2 * np.pi, boundary="periodic")
theta_jn = Sine(name="theta_jn")
psi = Uniform(name="psi", minimum=0, maximum=np.pi, boundary="periodic")
phase = Uniform(name="phase", minimum=0, maximum=2 * np.pi, boundary="periodic")
dchi_0 = DeltaFunction(0.)
dchi_1 = DeltaFunction(0.)
dchi_2 = DeltaFunction(0.)
dchi_3 = DeltaFunction(0.)
dchi_4 = DeltaFunction(0.)
dchi_5l = DeltaFunction(0.)
dchi_6 = DeltaFunction(0.)
dchi_6l = DeltaFunction(0.)
dchi_7 = DeltaFunction(0.)
dbeta_2 = DeltaFunction(0.)
dbeta_3 = DeltaFunction(0.)
dalpha_2 = Uniform(minimum=-10, maximum=10, latex_label="$\\delta \\alpha_2$")
dalpha_3 = DeltaFunction(0.)
dalpha_4 = DeltaFunction(0.)
dalpha_5 = DeltaFunction(0.)

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bilby_tgr-0.2.tar.gz (64.6 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

bilby_tgr-0.2-py3-none-any.whl (53.9 kB view details)

Uploaded Python 3

File details

Details for the file bilby_tgr-0.2.tar.gz.

File metadata

  • Download URL: bilby_tgr-0.2.tar.gz
  • Upload date:
  • Size: 64.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.17

File hashes

Hashes for bilby_tgr-0.2.tar.gz
Algorithm Hash digest
SHA256 a6f9ac35806d74e516fc96245351fafd732255919f74b0e106734a04d642b74e
MD5 efbba48ff6a8418f39d5e1cd180328a6
BLAKE2b-256 94c7819411aee86e19104e0eccdeebea7c3daf3eaf92470081a4ecafb3b3c59e

See more details on using hashes here.

File details

Details for the file bilby_tgr-0.2-py3-none-any.whl.

File metadata

  • Download URL: bilby_tgr-0.2-py3-none-any.whl
  • Upload date:
  • Size: 53.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.17

File hashes

Hashes for bilby_tgr-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 483df867d11341df4ea6759c67bf0dc5117236693be37a60dde40e76a9054b1f
MD5 15242fd22bb469b4ea972b3c97a0bae1
BLAKE2b-256 c8054cebd58ba588bc6cf325911f71171dd77db792b3c540d4477f853cfdae50

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page