Skip to main content

LCMS Processing tools used by the Metabolomics Platform at the Broad Institute.

Project description

BMXP - The Metabolomics Platform at the Broad Institute

pip install bmxp

Please cite: https://www.biorxiv.org/content/10.1101/2023.06.09.544417v1.full

This is a collection of tools for processing our data, which powers our cloud processing workflow. Each tool is meant to be a standalone module that performs a step in our processing pipeline. They are written in Python and C, and designed to be perfomant and cloud-compatible.

  • Eclipse - Align two or more same-method nontargeted LCMS datasets
  • Gravity - Cluster redundant LCMS features based on RT and Correlation (And someday, XIC shape)
  • Blueshift - Drift Correction via pooled technical replicates and internal standards
  • Formation - Formatting and Final QC
  • Chroma - Read .raw and .mzml files

We expect users to be familiar with Python and already have an understanding of LCMS Metabolomics data processing and the specific steps they wish to accomplish.

While the tools are and always will be standalone, we are working on linking them closer together with a shared schema, and eventually may have a pipeline ability to run all steps, given a set of parameters.

We are open to feedback and suggestions, with a focus on performance and application in pipelines.

Shared Schema

All BMXP modules use a shared schema and file formats with our prefered columns headers. These files are (along with their labels):

  • Feature Metadata bmxp.FMDATA - Describes the feature. Index default is Compound_ID
  • Injection Metadata bmxp.IMDATA - Describes the Injection. Index default is injection_id
  • Sample Metadata bmxp.SMDATA - Describes the biospecimen from which the Injection is derived. Index default is broad_id
  • Feature Abundances - Pivot table of Feature x Injection (Compound_ID x injection_id) containing the abundances.

Some modules (Blueshift, Eclipse) require merging Feature Metadata + Feature Abundances.

These can be changed globally so that all packages will use the same terminology. To update the schema, modify the dictionary objects in the module directly prior to running code. For example:

import bmxp
from bxmp.eclipse import MSAligner
from bxmp.blueshift import DriftCorrection
from bmxp.gravity import cluster
bmxp.FMDATA['Compound_ID'] = 'Feature_ID'
bmxp.IMDATA['injection_id'] = 'Filename'

# continue with work...

With those changes above, Eclipse, Blushift and Gravity will use "Feature_ID" and "Filename" as column headers instead of "Compound_ID" and "injection_id".

Feature Metadata - bmxp.FMDATA

Feature Metadata describes the LCMS feature. This is a mixture of fundamental nontargeted feature information, annotation info, and anything else.

Feature Specific

  • Compound_ID - Index, Project-unique feature ID (a bit of a misnomer)
  • RT - Unitless retention time, may or may not be scaled
  • MZ - Unsigned mass-to-charge ratio
  • Intensity - Average feature intensity
  • Method - Human Readable name of LCMS method used
  • __extraction_method - Name of extraction method/software used. Used to denote mixed Targeted/Nontargeted

Annotation

  • Annotation_ID - Method-unique annotation label
  • Adduct - Adduct form of the annotation
  • __annotation_id - Globally unique annotation identifier
  • Metabolite - Preferred display/reporting name of metabolite
  • Non_Quant - Boolean denoting that a feature is not quanitifiable

Generated by Gravity

  • Cluster_Num - Cluster number assigned during Gravity clustering
  • Cluster_Size - Number of members in the cluster

Generated by Blueshift

  • Batches Skipped - Batches that were skipped due to lack of PREFs

Injection Metadata - bmxp.IMDATA

  • injection_id - Index, Injection name, usually filename without the extension
  • broad_id - Assigned biospeciemn label
  • program_id - Biospecimen label as received (inherited from Sample Metadata)
  • injection_type - Type of injection ("sample", "prefa", "prefb", "blank", "other-", "not_used-")
  • comments - Comments about the injection
  • column_number - Column number, in multi-column studies
  • injection_order - Injection number, not skipping blanks or non-samples
  • batches - Denotes batches ('batch_start' or 'batch_end')

Generated by Blueshift

  • QCRole - Role in drift correction ("QC-drift_correction", "QC-pooled_ref", "QC-not_used", "sample")

Sample Metadata - bmxp.SMDATA

  • broad_id - Assigned biospecimen label
  • Arbitrary Metadata Columns - Any column label except labels in Injection Metadata

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

bmxp-0.4.8.tar.gz (1.5 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

bmxp-0.4.8-py3-none-any.whl (216.4 kB view details)

Uploaded Python 3

File details

Details for the file bmxp-0.4.8.tar.gz.

File metadata

  • Download URL: bmxp-0.4.8.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.12

File hashes

Hashes for bmxp-0.4.8.tar.gz
Algorithm Hash digest
SHA256 a2fb0f600141a21a430995bbde6b5afa235c8bcc5c81447a88957c61676be996
MD5 98ead8a8b8f28c55efb88a2a931f523a
BLAKE2b-256 81ba5303355a8753b6c93d45aca7bb77f29c397049ae7d8aa6792564b604585d

See more details on using hashes here.

File details

Details for the file bmxp-0.4.8-py3-none-any.whl.

File metadata

  • Download URL: bmxp-0.4.8-py3-none-any.whl
  • Upload date:
  • Size: 216.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.12

File hashes

Hashes for bmxp-0.4.8-py3-none-any.whl
Algorithm Hash digest
SHA256 396fc6917597c83a017a6a7300bfbbcb4dff593c968165ef4fe200b8eebb0818
MD5 89eedce451e36289728ba296f5c57206
BLAKE2b-256 980f3bcdfbac6e70d00638ccf6de816b3c6acec0a0d350d9dbeab420d563f5ca

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page