Skip to main content

A framework for Bayesian multi-object tracking

Project description

PyPI Downloads Black Tests pre-commit Documentation codecov

logo

Bayesian Tracker (btrack) 🔬💻

btrack is a Python library for multi object tracking, used to reconstruct trajectories in crowded fields. Here, we use a probabilistic network of information to perform the trajectory linking. This method uses spatial information as well as appearance information for track linking.

The tracking algorithm assembles reliable sections of track that do not contain splitting events (tracklets). Each new tracklet initiates a probabilistic model, and utilises this to predict future states (and error in states) of each of the objects in the field of view. We assign new observations to the growing tracklets (linking) by evaluating the posterior probability of each potential linkage from a Bayesian belief matrix for all possible linkages.

The tracklets are then assembled into tracks by using multiple hypothesis testing and integer programming to identify a globally optimal solution. The likelihood of each hypothesis is calculated for some or all of the tracklets based on heuristics. The global solution identifies a sequence of high-likelihood hypotheses that accounts for all observations.

We developed btrack for cell tracking in time-lapse microscopy data.

Installation

btrack has been tested with Python on x86_64 macos>=11, ubuntu>=20.04 and windows>=10.0.17763. Note that btrack<=0.5.0 was built against earlier version of Eigen which used C++=11, as of btrack==0.5.1 it is now built against C++=17.

Installing the latest stable version

pip install btrack

Usage examples

Visit btrack documentation to learn how to use it and see other examples.

Cell tracking in time-lapse imaging data

We provide integration with Napari, including a plugin for graph visualization, arboretum.

CellTracking
Video of tracking, showing automatic lineage determination


Development

The tracker and hypothesis engine are mostly written in C++ with a Python wrapper. If you would like to contribute to btrack, you will need to install the latest version from GitHub. Follow the instructions on our developer guide.


Citation

More details of how this type of tracking approach can be applied to tracking cells in time-lapse microscopy data can be found in the following publications:

Automated deep lineage tree analysis using a Bayesian single cell tracking approach
Ulicna K, Vallardi G, Charras G and Lowe AR.
Front in Comp Sci (2021)
doi:10.3389/fcomp.2021.734559

Local cellular neighbourhood controls proliferation in cell competition
Bove A, Gradeci D, Fujita Y, Banerjee S, Charras G and Lowe AR.
Mol. Biol. Cell (2017)
doi:10.1091/mbc.E17-06-0368

@ARTICLE {10.3389/fcomp.2021.734559,
   AUTHOR = {Ulicna, Kristina and Vallardi, Giulia and Charras, Guillaume and Lowe, Alan R.},
   TITLE = {Automated Deep Lineage Tree Analysis Using a Bayesian Single Cell Tracking Approach},
   JOURNAL = {Frontiers in Computer Science},
   VOLUME = {3},
   PAGES = {92},
   YEAR = {2021},
   URL = {https://www.frontiersin.org/article/10.3389/fcomp.2021.734559},
   DOI = {10.3389/fcomp.2021.734559},
   ISSN = {2624-9898}
}
@ARTICLE {Bove07112017,
  author = {Bove, Anna and Gradeci, Daniel and Fujita, Yasuyuki and Banerjee,
    Shiladitya and Charras, Guillaume and Lowe, Alan R.},
  title = {Local cellular neighborhood controls proliferation in cell competition},
  volume = {28},
  number = {23},
  pages = {3215-3228},
  year = {2017},
  doi = {10.1091/mbc.E17-06-0368},
  URL = {http://www.molbiolcell.org/content/28/23/3215.abstract},
  eprint = {http://www.molbiolcell.org/content/28/23/3215.full.pdf+html},
  journal = {Molecular Biology of the Cell}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

btrack-0.7.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

btrack-0.7.0-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file btrack-0.7.0.tar.gz.

File metadata

  • Download URL: btrack-0.7.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for btrack-0.7.0.tar.gz
Algorithm Hash digest
SHA256 56f29ba3e0b68bc6c87f2e4a6bbdf2cc8c0ca75f21d0caabf3801299976da782
MD5 4d0d5d4f06f3e3c99bd1d05b444b92a3
BLAKE2b-256 8d59dc0578d7778861f64fbf659e8f786de7f4dbb9d85b4851c2c0fd11e3791e

See more details on using hashes here.

Provenance

The following attestation bundles were made for btrack-0.7.0.tar.gz:

Publisher: deploy.yml on quantumjot/btrack

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file btrack-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: btrack-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 1.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for btrack-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 1144abc5419ab382a6dc84e593c3d8930b92cf118eae450255298ebc378eaa23
MD5 0c97b8f2451dd6a15802d7a9734bd693
BLAKE2b-256 8197135e95fc59cd892dbdbeb890d85ac139bbfde41e618dbb7cbe7bb1c208d6

See more details on using hashes here.

Provenance

The following attestation bundles were made for btrack-0.7.0-py3-none-any.whl:

Publisher: deploy.yml on quantumjot/btrack

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page