Skip to main content

3D cell shape analysis using geometric deep learning on point clouds

Project description

Python Version PyPI Downloads Wheel Development Status Tests Coverage Status Code style: black

Cellshape logo by Matt De Vries


Cellshape-cloud is an easy-to-use tool to analyse the shapes of cells using deep learning and, in particular, graph-neural networks. The tool provides the ability to train popular graph-based autoencoders on point cloud data of 2D and 3D single cell masks as well as providing pre-trained networks for inference.

To install

pip install cellshape-cloud

Usage

Basic Usage

import torch
from cellshape_cloud import CloudAutoEncoder

model = CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

points = torch.randn(1, 2048, 3)

recon, features = model(points)

To train an autoencoder on a set of point clouds created using cellshape-helper:

import torch
from torch.utils.data import DataLoader

import cellshape_cloud as cloud
from cellshape_cloud.vendor.chamfer_distance import ChamferDistance


input_dir = "path/to/pointcloud/files/"
batch_size = 16
learning_rate = 0.0001
num_epochs = 1
output_dir = "path/to/save/output/"

model = cloud.CloudAutoEncoder(num_features=128, 
                         k=20,
                         encoder_type="dgcnn",
                         decoder_type="foldingnet")

dataset = cloud.PointCloudDataset(input_dir)

dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)

criterion = ChamferDistance()

optimizer = torch.optim.Adam(
    model.parameters(),
    lr=learning_rate * 16 / batch_size,
    betas=(0.9, 0.999),
    weight_decay=1e-6,
)

cloud.train(model, dataloader, num_epochs, criterion, optimizer, output_dir)

Parameters

  • num_features: int.
    The size of the latent space of the autoencoder.
  • k: int.
    The number of neightbours to use in the k-nearest-neighbours graph construction.
  • encoder_type: str.
    The type of encoder: 'foldingnet' or 'dgcnn'
  • decoder_type: str.
    The type of decoder: 'foldingnet' or 'dgcnn'

For developers

  • Fork the repository
  • Clone your fork
git clone https://github.com/USERNAME/cellshape-cloud 
  • Install an editable version (-e) with the development requirements (dev)
cd cellshape-cloud
pip install -e .[dev] 
  • To install pre-commit hooks to ensure formatting is correct:
pre-commit install
  • To release a new version:

Firstly, update the version with bump2version (bump2version patch, bump2version minor or bump2version major). This will increment the package version (to a release candidate - e.g. 0.0.1rc0) and tag the commit. Push this tag to GitHub to run the deployment workflow:

git push --follow-tags

Once the release candidate has been tested, the release version can be created with:

bump2version release

References

[1] An Tao, 'Unsupervised Point Cloud Reconstruction for Classific Feature Learning', GitHub Repo, 2020

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

cellshape-cloud-0.0.9.tar.gz (6.9 kB view details)

Uploaded Source

Built Distribution

cellshape_cloud-0.0.9-py3-none-any.whl (6.9 kB view details)

Uploaded Python 3

File details

Details for the file cellshape-cloud-0.0.9.tar.gz.

File metadata

  • Download URL: cellshape-cloud-0.0.9.tar.gz
  • Upload date:
  • Size: 6.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for cellshape-cloud-0.0.9.tar.gz
Algorithm Hash digest
SHA256 62a86f836b9780d0b178cd4860c1e1ddd407a2767ab928adda1f94de48085a08
MD5 c4467cf6d29ae8968baae96b90667a9b
BLAKE2b-256 cded1981157290800d123a93622fa528210fa2a11334e0de0380db27dcfe7279

See more details on using hashes here.

File details

Details for the file cellshape_cloud-0.0.9-py3-none-any.whl.

File metadata

File hashes

Hashes for cellshape_cloud-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 23fb5bdc70bb2a3fdaeb4e22c589426469a5069b4642f571ac724629aba35827
MD5 a573d60cb57746e0046bece4a0c1b299
BLAKE2b-256 17de3d0332ddf9e526ac4f72344483864131c14e6767799ad86e81ed7ee68d47

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page