Skip to main content

Pretrained Universal Neural Network Potential for Charge-informed Atomistic Modeling

Reason this release was yanked:

inconsistent with github release: https://github.com/CederGroupHub/chgnet/issues/125#issuecomment-1967859266

Project description

CHGNet

Tests Codacy Badge arXiv GitHub repo size PyPI Docs

A pretrained universal neural network potential for charge-informed atomistic modeling Logo Crystal Hamiltonian Graph neural Network is pretrained on the GGA/GGA+U static and relaxation trajectories from Materials Project, a comprehensive dataset consisting of 1.5 Million structures from 146k compounds spanning the whole periodic table.

CHGNet highlights its ability to study electron interactions and charge distribution in atomistic modeling with near DFT accuracy. The charge inference is realized by regularizing the atom features with DFT magnetic moments, which carry rich information about both local ionic environments and charge distribution.

Pretrained CHGNet achieves SOTA performance on materials stability prediction from unrelaxed structures according to Matbench Discovery [repo].

Example notebooks

Notebooks Links       Descriptions
CHGNet Basics Open in Google Colab Examples for loading pre-trained CHGNet, predicting energy, force, stress, magmom as well as running structure optimization and MD.
Tuning CHGNet Open in Google Colab Examples of fine tuning the pretrained CHGNet to your system of interest.
Visualize Relaxation Open in Google Colab Crystal Toolkit that visualizes atom positions, energies and forces of a structure during CHGNet relaxation.

Installation

You can install chgnet through pip:

pip install chgnet

Docs

View API docs.

Usage

Direct Inference (Static Calculation)

Pretrained CHGNet can predict the energy (eV/atom), force (eV/A), stress (GPa) and magmom ($\mu_B$) of a given structure.

from chgnet.model.model import CHGNet
from pymatgen.core import Structure

chgnet = CHGNet.load()
structure = Structure.from_file('examples/mp-18767-LiMnO2.cif')
prediction = chgnet.predict_structure(structure)
for key in ("energy", "forces", "stress", "magmom"):
    print(f"CHGNet-predicted {key}={prediction[key[0]]}\n")

Molecular Dynamics

Charge-informed molecular dynamics can be simulated with pretrained CHGNet through ASE environment

from chgnet.model.model import CHGNet
from chgnet.model.dynamics import MolecularDynamics
from pymatgen.core import Structure
import warnings
warnings.filterwarnings("ignore", module="pymatgen")
warnings.filterwarnings("ignore", module="ase")

structure = Structure.from_file("examples/mp-18767-LiMnO2.cif")
chgnet = CHGNet.load()

md = MolecularDynamics(
    atoms=structure,
    model=chgnet,
    ensemble="nvt",
    temperature=1000,  # in K
    timestep=2,  # in femto-seconds
    trajectory="md_out.traj",
    logfile="md_out.log",
    loginterval=100,
    use_device="cpu",  # use 'cuda' for faster MD
)
md.run(50)  # run a 0.1 ps MD simulation

Visualize the magnetic moments after the MD run

from ase.io.trajectory import Trajectory
from pymatgen.io.ase import AseAtomsAdaptor
from chgnet.utils import solve_charge_by_mag

traj = Trajectory("md_out.traj")
mag = traj[-1].get_magnetic_moments()

# get the non-charge-decorated structure
structure = AseAtomsAdaptor.get_structure(traj[-1])
print(structure)

# get the charge-decorated structure
struct_with_chg = solve_charge_by_mag(structure)
print(struct_with_chg)

Structure Optimization

CHGNet can perform fast structure optimization and provide site-wise magnetic moments. This makes it ideal for pre-relaxation and MAGMOM initialization in spin-polarized DFT.

from chgnet.model import StructOptimizer

relaxer = StructOptimizer()
result = relaxer.relax(structure)
print("CHGNet relaxed structure", result["final_structure"])

Model Training / Fine-tune

Fine-tuning will help achieve better accuracy if a high-precision study is desired. To train/tune a CHGNet, you need to define your data in a pytorch Dataset object. The example datasets are provided in data/dataset.py

from chgnet.data.dataset import StructureData, get_train_val_test_loader
from chgnet.trainer import Trainer

dataset = StructureData(
    structures=list_of_structures,
    energies=list_of_energies,
    forces=list_of_forces,
    stresses=list_of_stresses,
    magmoms=list_of_magmoms,
)
train_loader, val_loader, test_loader = get_train_val_test_loader(
    dataset, batch_size=32, train_ratio=0.9, val_ratio=0.05
)
trainer = Trainer(
    model=chgnet,
    targets="efsm",
    optimizer="Adam",
    criterion="MSE",
    learning_rate=1e-2,
    epochs=50,
    use_device="cuda",
)

trainer.train(train_loader, val_loader, test_loader)

Note

  1. The energy used for training should be energy/atom if you're fine-tuning the pretrained CHGNet.
  2. The pretrained dataset of CHGNet comes from GGA+U DFT with MaterialsProject2020Compatibility. The parameter for VASP is described in MPRelaxSet. If you're fine-tuning with MPRelaxSet, it is recommended to apply the MP2020 compatibility to your energy labels so that they're consistent with the pretrained dataset.
  3. If you're fine-tuning to functionals other than GGA, we recommend you refit the AtomRef.
  4. CHGNet stress is in unit GPa, and the unit conversion has already been included in dataset.py. So VASP stress can be directly fed to StructureData
  5. To save time from graph conversion step for each training, we recommend you use GraphData defined in dataset.py, which reads graphs directly from saved directory. To create saved graphs, see examples/make_graphs.py.
  6. Apple’s Metal Performance Shaders MPS is currently disabled until a stable version of pytorch for MPS is released.

Reference

link to our paper: https://doi.org/10.48550/arXiv.2302.14231

Please cite the following:

@article{deng_2023_chgnet,
  title={{CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling}},
  author={Deng, Bowen and Zhong, Peichen and Jun, KyuJung and Riebesell, Janosh and Han, Kevin and Bartel, Christopher J and Ceder, Gerbrand},
  journal={arXiv preprint arXiv:2302.14231},
  year={2023},
  url = {https://arxiv.org/abs/2302.14231}
}

Development & Bugs

CHGNet is under active development, if you encounter any bugs in installation and usage, please open an issue. We appreciate your contributions!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

chgnet-0.2.0.tar.gz (4.3 MB view details)

Uploaded Source

Built Distributions

chgnet-0.2.0-py3-none-any.whl (4.3 MB view details)

Uploaded Python 3

chgnet-0.2.0-cp311-cp311-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.11Windows x86-64

chgnet-0.2.0-cp311-cp311-win32.whl (4.4 MB view details)

Uploaded CPython 3.11Windows x86

chgnet-0.2.0-cp311-cp311-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ x86-64

chgnet-0.2.0-cp311-cp311-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.11musllinux: musl 1.1+ i686

chgnet-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

chgnet-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

chgnet-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

chgnet-0.2.0-cp310-cp310-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.10Windows x86-64

chgnet-0.2.0-cp310-cp310-win32.whl (4.4 MB view details)

Uploaded CPython 3.10Windows x86

chgnet-0.2.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

chgnet-0.2.0-cp310-cp310-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

chgnet-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

chgnet-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

chgnet-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

chgnet-0.2.0-cp39-cp39-win_amd64.whl (4.4 MB view details)

Uploaded CPython 3.9Windows x86-64

chgnet-0.2.0-cp39-cp39-win32.whl (4.4 MB view details)

Uploaded CPython 3.9Windows x86

chgnet-0.2.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

chgnet-0.2.0-cp39-cp39-musllinux_1_1_i686.whl (4.8 MB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

chgnet-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

chgnet-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (4.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686manylinux: glibc 2.5+ i686

chgnet-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl (4.4 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

File details

Details for the file chgnet-0.2.0.tar.gz.

File metadata

  • Download URL: chgnet-0.2.0.tar.gz
  • Upload date:
  • Size: 4.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for chgnet-0.2.0.tar.gz
Algorithm Hash digest
SHA256 5c2a3e1b1e9fb5773b999bbbd5f90b7bd08f7be63ad3334ebdeb690a1ab39cb2
MD5 38514a1d601799ecbe9ae943390f87df
BLAKE2b-256 f4f2d8ce15799ae4098264cf5cb23f446964cc9eed8342ca292fc2a5935bf1ae

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: chgnet-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.4

File hashes

Hashes for chgnet-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ee59c4595c10fd08d02e97d4d8262affbf63ef4f4fc398ab2ce846ca4f6299a1
MD5 4ecff840cd8feb0efff54061a4af817e
BLAKE2b-256 b7a0ef4e5228eb76a43de332bfb7e7693e34bb5630b30b503fdc1cc54b2c8e89

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 49ba132696dd962982c254edcd1d439747b09e057ab35118cb86235c908b4d29
MD5 b85ac4506de4f1b9f0bdb88ba958f436
BLAKE2b-256 ca1b0893985e0b6d045def6dc1595f1c336bd14556741961742ef64a07944b9f

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 07b27b5562d5ee18355bc70ccf649346d26bfd2dc577a2a7c92501f22ffd2e92
MD5 a0f222e487dbf74b6c74b7f689c52bd6
BLAKE2b-256 772cf3cfc9789f56eda25c42584ccb305a181eb3edbb07f6313abef5a24ab4ec

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4b8d6a70e287a6d73987b6166f354fb7cca3f71b63356eaacdd96459fdb89db4
MD5 d96692f1dd94de55fb3b928f61987738
BLAKE2b-256 f0b06a2aaf98b8383cc65e7e3fc41b7cfac0adbab6fbc21a08b8d5a97e712d8c

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 39c43442113519b9fe54ca920096b41c061d73db55539ee39ba1bc1e2103c056
MD5 3a1cb5441ed21a7a6e55a6b2fe1dfe29
BLAKE2b-256 aa97fb99e4be30f9a6033f579dd516479e948ed4b2a70740cad9daa0b542b9e6

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5702bced7fe894cbb931ec19bcafbca0f8ab964638bca98ef780a2d5ac8e4ec
MD5 de81dcc4d708e2d2cd06bf47d559eff2
BLAKE2b-256 1a669d4957544ed99b6eadb24c768994955caadb44b8e08d54ac3a82317adf88

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 135d91250e8cf4c0892cbc14a7a1b9de620581746201a9caa29773398a83e050
MD5 7aa738d8ebff593cc85929b63de15759
BLAKE2b-256 3decec004e122e568d148bd64a242f99171bf7e2d96ab9743ad89a3cd3bf38f5

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9bfa30e3aff4cdfb38865742eba0a3e304076b13c90232e01ba53ecf97377c4d
MD5 e221bec3c6e0342c17f5a00f7c283c37
BLAKE2b-256 b4fb323023fa04a3706f0c5b2c26baa89f7f17ec90361c3e704cd2bfa855ddce

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a3f69d9c98a9b08f53f83207e9ef4a7bd84136057b514181580143089bb81293
MD5 f6282d7569f2822bb672d62cd6db5af5
BLAKE2b-256 e672142507158162e579a3c6c3ad545b86031078c569ce842ab243afac79b562

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c9be26f28cbc37c7cbc43c5afc164d4adf55879fe1f0b5d10fcd2477195e8032
MD5 d2cd96c32e15975f5243d35ff7ff3a10
BLAKE2b-256 f114b2275bc6279c6731a3c9376228b89be5e4ab98c51cda716b15bfe51c3f6c

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 08a8e5f1360e749c79fc64b24989f17d8bb5733335afd674d38e679b45929518
MD5 abf21e16292ba677a2f26af83436870a
BLAKE2b-256 7e91549d5776d72ab478609915125c51daee43ee458dbab59a5e8f36630383ad

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 051febb8793f342bea6bd735ef942c608d3a70467d41a250a20bd24efe007f8d
MD5 21c90d16a7092d3bb54cec167e0cfd60
BLAKE2b-256 ba5d943722c264a1d020761c943ebfe57acefe990b2849f61879d211257509df

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b9d01421131641821327f8da3b67957407f509cf62969a35f9f1f8908852579
MD5 bb001efb61680711b665870d80402061
BLAKE2b-256 9c405c43a427baa1ee58970c76b923f4dd70c5a847b831366f372a73db9bb16c

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 47a9e80406f775e9cbf285d9ea45f3fa77e5a0b49c5aa5a13dd976c02c9ea9d8
MD5 de46e6fab387d353e7a8e3edd4f5773a
BLAKE2b-256 9574e23e6c143ae3a954f8a2546f6d5c14633cbdac1564e485a9f66c1afdbeb9

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1da83498e563f846d9e106cbc1b52c5466b5f1b78378428f8c801b2621afe19a
MD5 a6a50889f36e033d82a4d08f3dd46e6c
BLAKE2b-256 6b98e71489b519a1ca630555f8050b681dd1d1af8592b33fb9d8ac9e752d0cbc

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6aafb1899d99642c338b5af36e3873dd7aa61eea0b0ad6191ea5f522e8505c14
MD5 bbf6bce69e8e13effa0875e7d0576858
BLAKE2b-256 2e269450d118342c3c908aca7f5e28765c20ed140512ec1e8d46e82002a3a01a

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 57d094dd37d16f34d09b8fad30affd2ab0b2b293c132ec574286f87abc4210de
MD5 b29307a63e5f444972cd26b87b9d9137
BLAKE2b-256 a25e482c0f5d32ca0203e2e53e4b6905da32e6458ce3164fa0cdb7f1166fb8a7

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 33621f7d94c7176444bb35588d8943545e801bfa25d4473170a3910afffe8b53
MD5 329bba8fb7bbd7b3b4f27aac7b62db8f
BLAKE2b-256 d02be835c1460b8da3dd116ca68540c3b58d39d2588a9c4cbd70c3eb894cfc3b

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

  • Download URL: chgnet-0.2.0-cp39-cp39-musllinux_1_1_i686.whl
  • Upload date:
  • Size: 4.8 MB
  • Tags: CPython 3.9, musllinux: musl 1.1+ i686
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 aace505aa7ca644b44cd99b7a7b146fcb332202fc5625380af2b4ca3ab2fac8f
MD5 65bfcd1d78615cd917df123f0c54163e
BLAKE2b-256 53c02180542bdd523fba347129a950054b0c5de328f4cc9651a48ed9d7142419

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 138a1f3184a95548426290c2c8aec6219b32accb0d11f76f7b2ba931b1240c04
MD5 01e1094e0c3229756b866b022b8d0c73
BLAKE2b-256 3e5ac11385babf1834f4371cd64fff17257eb332a1dbac0858613713ca656f5e

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a84e768538607a3b896cb1aafca9727422382ae119f98380d97000db0e9fa6d0
MD5 02ea8e2f7e8728cdadcc71cfbbe34d8a
BLAKE2b-256 b4eed3e760ee0a003a11b889e6b5c610ab13fde7f5714332d1e66c9061afa1a2

See more details on using hashes here.

File details

Details for the file chgnet-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for chgnet-0.2.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 43cd710b03f5f3d1b654f53937c359afc09f6c9ce0f28bfeb3a2dfe3bebbb175
MD5 be0776fe03c4debfa79db9c483de517d
BLAKE2b-256 005ab69c8ac5d029ec6412f6d6a8ceeb64328bd2c7c6e5c0483e6485eedad2dd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page